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article This study explored the concept of delay threshold to determine the proportion of

delay-days as an expansion of the theory of delay and our previous work. Data-driven
approach using statistical modelling was employed to a limited set of determinants of
daily delay at an airport. For the purpose of testing the efficacy of the threshold levels,
operational data for Entebbe International Airport were used as a case study. Findings
show differences in the proportions of delay at departure (u = 0.499; 95 % Cl = 0.023)
and arrival (u = 0.363; 95 % Cl = 0.022). Multivariate logistic model confirmed an
optimal daily departure and arrival delay threshold of 60 % for the airport given the
four probable thresholds {50, 60, 70, 80}. The decision for the threshold value was based
on the number of significant determinants, the goodness of fit statistics based on the
Wald test and the area under the receiver operating curves. These findings propose a
modelling framework to generate relevant information for the Air Traffic Management
relevant in planning and measurement of airport operational efficiency.

Keywords: Airport, Delay threshold, Efficiency, Statistical models,
Receiver operating curves

Background

Airport delay computations are often construed to suit different definitions (Madas
and Zografos 2008). Some definitions include aircraft turn-round time, whereas others
exclude it. The problem is even larger when one desires to assess daily efficiency of an
airport. Many studies have been conducted with the purpose of assessing efficiencies
of operations at an airport. In their study of the factors for delays at European airports
relative to the airports of the United States of America (Santos and Robin 2014) found
that while delays were higher at hub airports, hub airlines experienced lower delays than
non-hub airlines. A similar study (Liu et al. 2014) found that there was 30 % greater traf-
fic at airports in the United States of America airports than at European airports that
explained more delay at such airports. However, none of the studies considered optimal
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delay thresholds and its effect on drawing such important conclusions about levels and
differences between airports. In his recent study (Wesonga 2015) published the first
study that attempted to analyse delay thresholds at airport.

This study introduces the concept of threshold to be employed so as to determine the
minimum acceptable proportion above which a day is declared a delay-day at an airport.
This study is based on our previous work (Wesonga et al. 2012).

In this paper, data modelling was performed through algorithm design to determine
an acceptable threshold for airport delay day (Wong and Tsai 2013; Autey et al. 2013).
Furthermore, data modelling was done to a limited set of determinants of delay at an
airport for the purpose of testing the efficacy of the threshold levels (Wang et al. 2012;
Agustin et al. 2012), using Entebbe International Airport as a case study.

Data and methodology

Data for the period of 2004 through 2008 were collected on the variables as shown in
Table 1. The aviation and aeronautical meteorology variables known to influence airport
delay were carefully chosen and tested for autocorrelation before being applied into the
modelling process.

For each day at an airport, there are registered levels of delay. These vary in propor-
tions over time and would be misleading if one performed analysis based on the con-
sideration that any positively registered delay at an airport is actually a delay in its real
sense. Some delays are meant to enable an aircraft perform more efficiently through-
out its trajectory with minimum disturbances and distortions such as being re-routed
through other airports or even being cancelled. Therefore, if not all delays are bad in the
real sense, a question of what proportion of delay should be treated as a threshold for
computational and modelling purpose became eminent and a subject for this study.

Table 1 Daily data for aviation and meteorological study parameters for the period 2004

through 2008
Parameter no.  Parameter Variable type Daily aggregated data range
Minimum value  Maximum value

1 Air temperature Scale, continuous 19 25

2 Aircraft arriving on time (%) Scale, discrete 1 42

3 Aircraft delaying arrival (%) Scale, discrete 0 93

4 Aircraft delaying departure (%)  Scale, discrete 10 89

5 Aircraft on-time departure (%) Scale, discrete 0 81

6 Chartered flights Scale, discrete 0 50

7 Dew point temperature Scale, continuous 16 21

8 Freighters Scale, discrete 0 12

9 Non-commercial flights Scale, discrete 0 57

10 Persons on board-in Scale, discrete 138 3128

11 Persons on board-out Scale, discrete 130 3277

12 Queen’s nautical height Scale, continuous 975 1098

13 Scheduled flights Scale, discrete 5 55

14 Visibility Scale, continuous 7558 9999

15 Wind direction Scale, discrete 107 329

16 Wind speed Scale, discrete 2 9
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Statistical model framework

Modelling was premised on the fact that different levels of thresholds could dynami-
cally affect the statistical significance of determinants for airport delay. The question of
their levels of influence was studied using generalised linear models as demonstrated in
Egs. (1), (2) and (3).

Logistic regression model with dummies ‘0’ for airport’s daily on-time performance
while and ‘1’ for daily airport delay, constituted the dependent variable (Konishi and Kit-
agawa 2007; Nerlove and Press 1973). Determining what threshold to apply in this gen-
eralised linear modelling was an area of interest for this study. An aircraft is said to have
delayed if the difference between the actual and scheduled times of arrival or departure
were positive. In this study, a value for the dependent variable change based on what
threshold is applied. The threshold start point was a proportion of 1 % and the ultimate
being 100 % which implied that on any given day for any reporting based on the chosen
proportion (1 through 100 %) of delay, such a day would be classified as a delay-day (DD)
otherwise not-delay-day (NDD). Note that the daily proportions of delay were obtained
by dividing the number of aircrafts that delay their operation by the total number for
such an operation multiplied by one hundred; the operations could be departures or
arrivals.

Furthermore, a logistic regression model, known to estimate the probability with
which a certain event would happen or the probability of a sample unit with certain
characteristics expressed by the categories of the predictor variables, to have the prop-
erty expressed by the value 1 representing an airport’s delay day was employed. Estima-
tion of the probability was done by the logistic distribution as in Eq. (2), where f§’s are the
regression coefficients of the categories to which the sample unit belongs.

The following formulation was deemed as appropriate for modelling departure and
arrival delay.

n(X;)
n(l—n(X)) ZB’ M

where ﬁj represent coefficients of the model; X; = {Xu, Xios . . ., Xip} represent a set of
explanatory variables.
The logit ln(1 ”g& )) on the left hand side of Eq. (1) represent the logarithm of the

odds ratio which symbolize the conditional probability for DD given a set of explanatory
variables and its determinants were subsequently tested for significance of the underly-
ing relationship.

XD S B )

Therefore, the odds are exponential function of X; that provided a basic interpretation
of the magnitude of the coefficients. Positive fjs imply an increasing rate while negative
Bjimplies a decreasing rate and in either way, the magnitude of fj show the effect or level
of contribution towards determining DD. On the contrary, if 8; = 0 then the airport’s
DD was said to be independent of X;.
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P
expzj:1 Bj X

1+ explim1BXs 3)

n(Xj) =

Note that the values 0 < 7 (X;) < 1 represent the probability of delay-day based on a
set of meteorological and aviation parameters as shown in Table 1.

Since the logistic regression model is known to exhibit a curve rather than a lin-
ear appearance, the logistic function implied that the rate of change in the odds
1(Xj) per unit change in the explanatory variables X; varied according to the rela-
357(%‘) = B;[r(Xi)][1 — n(Xj)]. For example, if the odds of the proportion of delay
n(Xj) = % and the coefficient of the number of ‘scheduled flights’p = 0.46, then the slope

351(%1) = 0.46 * % * % = 0.115. The value 0.115 represents a change in the odds of depar-

tion

ture delay, (X;) per unit change in the number of ‘scheduled flights’ In simpler terms,
for every 100 scheduled flights at Entebbe International Airport, 11 delay to departure.
The R platform for statistical computing scientists (Chambers 2008; Dalgaard 2008) was
applied because of its known strengths in computing that include, but not restricted to:
the most comprehensive statistical analysis package available because it incorporates all
of the standard statistical tests, models and analyses, as well as provides a comprehen-
sive language for managing and manipulating data.

Findings and discussions

Data structure

Over the period under study, on every day, the total number of aircrafts departing and
arriving at Entebbe International airport was recorded. For each departure and arrival,
each aircraft’s operational performance was assessed in terms of the scheduled and
actual times and thus categorised accordingly. Thus, on every day and for every N air-
crafts at the airport, there were Np and N4 departures and arrivals respectively. And for
every Np and Ny, some Np, or Nyy and Np; or Ny were computed to represent either
departure or arrival delays and on-time departure or arrival respectively. Therefore, on
an ith day, the following computations were derived where the proportions for daily air-
craft departures and arrivals were computed on the one to one relationship;

Npg
Npa~+Npt
P Dd Np:
Ppy Npa+Npy
= x 100 %
Py Nag “4)
Py Naa+Nar
Nae
Naa+Nae

Subsequently, for any ith day, a decision was taken to categorise it as a delay-day, DD or
not a delay day, NDD based on a set of delay thresholds dT = {10, 20, 30, 40, 50, 60, 70,
80, 90, 100}. However, the decision to determine a DD for departures and arrivals was
based on the following one to many comparisons below;

50
Ppy 60
(PM ) = | 70 )

80
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The delay thresholds dT = {10, 20, 30, 40, 90, 100} were found inappropriate to model
because they are logically not suitable since values for delay proportions less than 50 %
could imply that on time performance was more than delay and 90 with 100 % tended to
imply that all flights delayed, which in our case study did not arise on any day.

Descriptive statistics for the dependent dummy threshold levels

To be able to employ the logistic regression modelling approach, we thus cre-
ated dummy variables for departure and arrival for each of the four candidate
delay thresholds dT = {50, 60, 70, 80} as dT = {dT50,dT60,dT70,dT80} and
aT = {aT50,aT60,aT70,aT80} respectively. Table 2 shows the descriptive statistics for
the candidate departure and arrival delay thresholds.

From Table 2, examining the candidate thresholds for departure delay descriptive
statistics, for one to get an unbiased threshold, it was desirable that the statistics point
at the middle values as much as possible. In the event that there was no one candidate
presenting the desired exact middle values, then the threshold candidate with values
approximating the middle characteristics was preferred. Therefore, preliminary find-
ings in this study based on the actual operational data at Entebbe International Airport
both for departure (X = 0.499; SE = 0.012) and arrival (X = 0.363; SE = 0.011) delay
thresholds propose for recommendation a delay thresholds of 60 % (Ivanov et al. 2012).

Algorithm for determination of thresholds for departure and arrival delays
In Table 3, a set of processes for the algorithm employed to take care of the computa-
tional procedure of the study is presented.

Departure delay determinants
Table 4 presents the adjusted odds ratios for the logistic models under different prior
thresholds showing the levels of significance for the determinants of departure delay.
All the four threshold values were assumed with the Wald goodness of fit test-statistics
computed for each model representing a certain threshold level. The areas under the
ROC curves were presented.

The effects of parameters on departure delays was examined as shown in Table 4.
Model coefficients were examined for all determinants of departure delay that were

Table 2 Descriptive statistics for candidate threshold dummy variables

Departure delay thresholds Arrival delay thresholds

dT50 dT60 dT170 dT80 arso areéo ar70  aT80

Mean 0.945 0499 0.267 0.051 0.829 0.363 0182  0.044
Standard error 0.005 0.012 0.010 0.005 0.009 0.011 0.009  0.005
Standard deviation 0.229 0.500 0.442 0.221 0377 0481 0386  0.206
Sample variance 0.052 0.250 0.196 0.049 0.142 0.231 0.149  0.042
Kurtosis 13.187 —2.002 —0.884 14.533 1.050 —-1.679  0.715 17.654
Skewness —3.895 0.005 1.057 4.064 —1.746  0.568 1.647 4431
Sum 1726 911 487 94 1514 664 333 81
Count 1827 1827 1827 1827 1827 1827 1827 1827

Confidence level (95.0%)  0.010 0.023 0.020 0.010 0.017 0.022 0018  0.009
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Table 3 General algorithm for determining suitable thresholds for departure and arrival

delays
Step number Step model description
Step 0: Begin
Step 1.1: obtain the number of aircrafts departing and arriving at the airport per day
Step 2.0: // Handling Departures
Step 2.1: For each day,
Step 2.1.1: compute the proportion of departure (Ppg)
Step 2.1.2: generate dummy variables dT50 with 1 when Ppgq > 50 else 0
Step 2.1.3: generate dummy variables dT60 with 1 when Ppgq > 60 else 0
Step 2.1.4: generate dummy variables dT70 with 1 when Ppq > 70 else 0
Step 2.1.5: generate dummy variables dT80 with 1 when Ppgq > 80 else 0
Step 2.1.6: End;
Step 3.0: // Handling Arrivals
Step 3.1: For each day,
Step 3.1.1: compute the proportion of arrival (Paq)
Step 3.1.2: generate dummy variables aTS0 with 1 when Paq > 50 else 0
Step 3.1.3: generate dummy variables aT60 with 1 when Paq > 60 else 0
Step 3.1.4: generate dummy variables aT70 with 1 when Paq > 70 else 0
Step 3.1.5: generate dummy variables aT80 with 1 when Paq > 80 else 0

Step 3.1.6: End;
Step 4: Perform preliminary statistical tests on the set of dummy variables
{dT50, dT60, dT70, dT80, aT50, aT60, aT70, aT80}

Step 5.1: Obtain all explanatory variables for airport daily departure from Table 1

Step 5.1.1: For all thresholds dT50 through dT80

Step 5.1.2: develop a logistic regression model

Step 5.1.3: determine the threshold level with the most number of significant variables
Step 5.1.4: End;

Step 6.1: Obtain all explanatory variables for airport daily arrivals from Table 1

Step 6.1.1: For all thresholds aT50 through aT80

Step 6.1.2: develop a logistic regression model

Step 6.1.3: determine the threshold level with the most number of significant variables
Step 6.1.4: End;

Step 7.0: // outputs

Step 7.1: the determined threshold level for computing aircraft departures from step 5.1.3
Step 7.2: the determined threshold level for computing aircraft departures from step 6.1.3
Step 7.3: summary probabilities of delay at departure and arrival using the chosen thresholds
Step 8:  End.

generated at the four candidate threshold values (50, 60, 70, 80). The Wald test-statistics
were examined for each model for statistical significance at the four candidate thresh-
old levels. The criterion for selection of the best model and thus the most appropriate
threshold level was done based on the variable qualities; besides the Wald test-statistics
and the area under the ROC curve as shown in Fig. 1. As a result, the delay threshold of
60 % was found to generate the best model, followed by 70, 50 and 80 % respectively.

Table 5 presents models at the different levels of significance for determinants of arrival
delay. All the four threshold values (50, 60, 70, 80) were assumed and estimates of the
logit model computed at every level. The Wald test-statistics were examined for each
model and statistical significance for the predictors at the four candidate threshold levels.
The quality of variables; the Wald test-statistics and the area under the ROC curves as
shown in Fig. 2 were applied to determine the best model. As a result, the delay threshold
of 60 % was found to generate the best model, followed by 70, 50 and 80 % respectively.

Discussions and conclusions

We explored modelling approach premised on the binary logistic regression to deter-
mine a better level of delay threshold that optimally evaluates the dynamics of air traffic
delay during departure and arrival at an airport (Santos and Robin 2010). Four different
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Table 4 Model estimations based on four threshold levels for departure delay determi-

nants
Characteristic Adjusted odds ratio

Threshold 1 (50 %) Threshold 2 (60%) Threshold 3 (70%) Threshold 4 (80 %)
Arrival threshold 2.871** 0.457** 0.203** 1.000
Arrival delay 0.891** 1.011 1.003 0.978
Aircraft operations 0.541% 1.288** 1.810%* 4815
Scheduled flights 1.910* 0.651** 0.466** 0.002
Chartered flights 1.723% 0.635** 0.485%* 0.002
Freighters 2.145%* 0.827** 0.598** 0.002
Non-commercial 2.224** 0.842** 0.584** 0.002*
Persons outgoing 0.999*% 1.000 1.001%* 1.002
Persons incoming 1.001 1.000 1.000 0.999
Visibility 0.999 0.999* 1.000 1.000
Wind speed 1.003 1.038 1.039 1.005
Constant 4.794 62.914** 1.710 0339
Observations (N) 1827 1827 1827 1827
Covariate patterns 1827 1827 1827 1827
Pearson chi? 3312400 1703.820 2000.380 1092.990
Prob > chi? 0.000 0.970 0.001 1.000
Area under ROC curve  0.841 0.887 0.875 0.807

* represents 0.05 and ** represents 0.01 statistical levels of significance
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Fig. 1 Area under ROC curve for different departure delay thresholds. a 50 % departure threshold, b 60 %
departure threshold, € 70 % departure threshold, d 80 % departure threshold
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Table 5 Arrival delay determinants model based on four threshold levels

Characteristic Adjusted odds ratio

Threshold 1 (50 %) Threshold 2 (60 %) Threshold 3 (70 %) Threshold 4 (80 %)

Departure threshold 0.578 0.248** 0.137** 1.000
Departure delay 1.012 1.087%* 1.028 0.936*
Number of operations 0.965 1.462%* 1.960** 2.984
Scheduled flights 1.035 0.577** 0.000 0.000
Chartered flights 1.052 0.650** 0.001** 0.000
Freighters 0.883* 0.534** 0.001** 0.000
Non-commercial 1.057 0.660** 0.001** 0.000
Persons outgoing 1.000 1.001 1.001* 1.001
Persons incoming 1.001* 1.000* 1.0071** 1.001
Visibility 1.000 0.999* 1.000
Wind speed 0.976 1.025
Constant 1.097 21.430%* 4618 0.880
No. of observations 1827 1827 1827 1827
No. of covariate patterns 1827 1827 1827 1827
Pearson chi? 1874.690 2648.530 1352.250 1119.900
Prob > chi? 0.161 0.000 1.000 1.000
Area under ROC curve  0.679 0.882 0.802 0.844
* represents 0.05 and ** represents 0.01 statistical levels of significance
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Fig. 2 Area under ROC curve for different arrival delay thresholds. a 50 % arrival delay threshold, b 60 %
arrival delay threshold, € 70 % arrival delay threshold, d 80 % arrival delay threshold

Page 8 of 10



Wesonga and Nabugoomu SpringerPlus (2016)5:1026 Page 9 of 10

scenarios were evaluated for both cases of departures and arrivals. The study established
that at Entebbe International Airport, departure delay threshold of air traffic flow oper-
ations of 60 % provided the best and stable model characteristics. Variations of levels
of significance for parameters of delay were detected at different delay thresholds, thus
generating different numbers of significant parameters. For example, in both Tables 4
and 5; sub-table (d) presented the worst levels of parameter sensitivity with the least
number of significant variables while sub-table (b) provided more stable models in both
cases (Wesonga and Nabugoomu 2014; Helmuth et al. 2011).

These findings are significance in two ways; first, to the air traffic flow managers that
daily proportions of aircraft delay below the 60 % threshold level could be considered
normal operations. Therefore, such daily delays may be attributed to normal airport
operational such as the turn-around time before actual departures and arrivals. Sec-
ondly, to the other aviation stakeholders including air passengers, the higher threshold
level would indicate inefficiency of traffic flows. Comparison of air traffic flow ineffi-
ciencies based on the findings for departures are in the threshold order of 60 %, then
70 % compared to arrival threshold of 60 % followed by 50 % indicating that traffic flow
at arrival was less inefficient than that during departure since arrivals permitted lower
threshold level than departures (Wesonga et al. 2013; Zheng et al. 2010).

Besides, comparing aircraft flow performance between daily departures and arriv-
als, this framework is candidate to providing methodology for assessment and ranking
of airports based on their departure and arrival operational efficiency. Airports with
derived higher delay thresholds would be assessed as operationally more inefficient
than those with lower delay thresholds (Chou 2009; Wei et al. 2011). Therefore, a multi-
airport analysis based on this framework is recommended as a possible area of further
analysis and application of the derived framework of this study (Mukherjee and Hansen
2009; Bianco et al. 2001).
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