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Abstract 

 

In Uganda, using survey data, estimates of under-five mortality have only been available at national and 

regional levels. This study utilized small area estimation techniques in a Hierarchical Bayes framework 

to derive estimates of relative risk of under-five mortality up to District level. The study utilized the 

Uganda Demographic and Health Survey data of 1995, 2001 and 2006 in the investigations. Results 

show that the Poisson-gamma model could provide reliable estimates for   relative risk of under-five 

mortality. Results reveal that compared to the modeling approach, utilization of the traditional 

Standardized Mortality Ratio (SMR) could potentially be associated with very high undesirable 

coefficient of variations (>100%).  The modeling approach has added advantage over the commonly 

used SMR by estimating under-five disease risk for a particular district and smoothening using adjacent 

district estimates. The study further reveals that it is possible to utilize small area estimation techniques 

together with national survey data to generate relative risk of under-five mortality for districts in 

Uganda. These results are potentially useful for targeting District decentralized system level of 

governance with high relative risk of under-5 mortality. Key words: under-five mortality, district, 

small area estimation, disease mapping, Poisson-gamma, log-normal, Uganda. 
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Definition of Key Terminologies used in Study 
 

 Child mortality (4q1) is the probability of dying between exact ages one and five. 

Disease Mapping is a geographical distribution of a disease within a population (Lawson & Williams, 

2001). 

Empirical Bayes methods are procedures for statistical inference in which the prior distribution is 

estimated from the data usually via the marginal distribution. This approach stands in contrast to 

standard Bayesian methods, for which the prior distribution is fixed before any data are observed. 

Gibbs sampling is an algorithm to generate a sequence of samples from the joint probability 

distribution of two or more random variables. The purpose of such a sequence is to approximate the joint 

distribution, or to compute an integral (such as an expected value). Gibbs sampling and the Metropolis-

Hastings algorithm, are thus examples of a Markov chain Monte Carlo (MCMC) algorithm. Gibbs is 

one of the commonest methods of obtaining samples of parameters from posterior distributions, f(θ|y) 

that is estimation of relative risk (θ) given the data (y).  

 

Bayesian Hierarchical Models or framework have an inherent hierarchical structure in which 

estimation of relative risk given the data f(θ|y) is estimated from the product of the likehood f(y| θ) and 

the prior f(θ). Let α and β be known parameter for instance in a gamma distribution. The prior on the 

other hand, is characterized levels of hierarchy; for instance f(θ|α) at first level and f(α|β) at the second 

level. The structure can be terminated at simply the first level or extended to have more levels of 

hierarchy if required and hence a Bayesian Hierarchical model or framework. 

 

 

Incidence is the number of new cases of disease which occur in a specified time period and in a 

specified population. 
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Infant mortality (1q0) is the probability of dying between birth and the first birthday. 

National Surveys refers to surveys targeted to provide estimate or statistics for the entire country. 

Neonatal mortality (NN) is the probability of dying within the first month of life. 

Post neonatal mortality (PNN) is the probability of dying between the first month of life and first 

birthday (computed as the difference between infant and neonatal mortality). 

Prevalence is the number of new and existing cases of disease which occur in a specified time period 

and in a specified population. 

Prior probability distribution, often called simply the prior, of an uncertain quantity p is the 

probability distribution that would express one's uncertainty about p before the "data" e.g an opinion poll 

before a final vote. 

Relative Risk is the ratio of the incidence of disease in the exposed population to the incidence in the 

non-exposed population  (Lawson & Williams, 2001). It is a ratio of two probabilities. 

Small area estimation is statistical techniques involving the estimation of parameters for small sub-

populations, generally used when the sub-population of interest is included in a larger survey. 

The posterior distribution is the product of the likelihood and the prior distribution and all the 

inference about parameters are made from the posterior distribution. 

Under-five mortality (5q0) is the probability of dying between birth and the fifth birthday. 
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CHAPTER ONE: INTRODUCTION 
 

This chapter provides background to the study; motivation for undertaking the study, problem 

statement, provides the scope, research objectives and discusses significance of the study. The 

chapter also states the limitations of the study and the ethical considerations. The study utilized 

both research hypothesis and research questions. For the latter, there were no test statistic used 

but graphical approaches were utilized. 

1.1 Background to the Study 

 

Small area estimations are statistical techniques involving the estimation of parameters for small 

sub-populations, generally used when the sub-population of interest are included in a larger 

survey. It is important to note that studies and literature on small area estimation that specifically 

targets under-five mortality are categorized as disease mapping. This study used small area 

estimation terminology instead of its subset ‗disease mapping‘. Small area estimation is a 

broader subject that provides estimates from a sample data for sub-population whose sample size 

provides unreliable estimates using direct estimation techniques. On the other hand, disease 

mapping is a sub-set of small area estimation that provides estimation mainly focusing on disease 

counts like the under-five mortality and morbidity.   

 

Small area estimation involves using statistical models to link survey variable(s) of interest, such 

as disease, under-five mortality, poverty, etc to a local area such as a district or a sub-county 

whose estimates, because of small sample size at that level may not be derived by direct 

estimation from the available survey data. Small area estimates may be useful for government 
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agencies to allocate resources or identify hazardous areas related to high under-five mortality so 

that appropriate action may be taken (Lawson, et al., 2000; Meza, 2002; Wakefield, 2007). 

Mapping mortality and disease rates to display geographic variability is an increasingly common 

epidemiological tool and falls under a broad subject of small area estimation.  Understanding 

spatial clustering of under-five mortality can provide a guide in targeting interventions in a more 

strategic approach to the population where mortality is highest and the interventions are most 

likely to make an impact (Lutambi, Alexander, Jensen, Mahutanga, & Nathan, 2010). 

 

National surveys are widely used to provide estimates for the entire population parameters of 

interest but also for sub-populations (domains) such as regions, rural or urban, sex and age 

groups. However, such sub-populations are generally too large to provide a sense of particular 

lower level localities (small areas) like district or counties or sub-counties where the actual 

problem can easily be identified. Intervention can easily be accomplished when a small locality 

has been identified with a particular problem. Small area estimation provides a solution to using 

survey data to furnish estimates at such lower localities. The idea is that small area estimation 

techniques in particular ―borrow strength‖ by using values of the variable of interest, yi (i=1,…D; 

D=Districts), from related areas to increase ―effective‖ sample size. The value of, yi, is by itself 

―too small‖ to provide a reliable direct estimate for a particular locality. For example, the number 

of under-five deaths, yi, derived from a national survey data may be too small to provide an 

estimate of under-five mortality for a particular district. However, using small area estimation, 

the value of, yi, can help derive a reliable estimate for the relative risk of under-five mortality for 

the district. In utilizing small area estimation techniques, the values, yi, are brought into the 

estimation process through a model that provides a link to the related areas. 
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Since many health data are unavailable at the district level, policy makers sometimes rely on 

national-level datasets to understand the health needs of their communities (Jia, et al., 2004). Jia 

et al., also show that obtaining district level estimates can be accomplished using small area 

estimation techniques. Policy makers in Uganda equally use regional estimates to generalize 

values for the districts. National Survey data in Uganda like the demographic and health survey 

data provide direct estimates up to regional level. In this case the country was clustered into 

regions (Figure 3.1) and this implies that the sample can be sufficient to derive estimates (direct) 

up to regional level. The sample at the district level from the survey data would actually be 

―small‖ but using small area estimation techniques, reliable district level estimates like relative 

risk of under-five mortality can actually be derived. The term ―small‖ therefore is derived from 

the fact that the sample for instance up to district level is generally small or will provide 

unreliable estimate up to that level. Small area is therefore a relative description of sample data 

that is not representative of a given locality or area.   

 

1.2 Motivation for the Study 

 There were many cases when students and other data users were always tempted to generate 

direct estimates for the district level statistics from national surveys. This motivated me to pursue 

this study to demonstrate that for one to use district level data from the current national survey, 

there is need to do more in terms of modelling.  

 

The area of spatial statistics appears to be gaining a lot of interest both locally and 

internationally. Locally, in the country many organizations I interacted with appear to be 

interested in displayed results on a map whenever services are offered in different areas like sub-
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counties, districts or regions. Results displayed on maps appear to be highly attractive to readers 

and could easily attract the attention of policy makers who may not have adequate time to read 

reports. This scenario, to a great extent also motivated me into small area estimation techniques. 

 

I have published at least three papers in international peer reviewed journals that are related to 

health particularly on mortality and this also created impetus to pursue a PhD in the same line of 

study. 

 

1.3 Problem Statement 

In Uganda, like in many developing countries often with budgetary constraints, censuses are 

usually carried out after every ten years to provide data up to the lowest administrative level like 

sub-county. However, censuses are usually limited in the variables captured due to the large 

coverage involved and the time lag of usually ten years. Other sources of data on mortality, like 

the Health Management Information System (HMIS) do not provide all cases of deaths since 

some of them that occur at household level are not reported to the health systems.  

 

National surveys supplement censuses and are carried out at shorter intervals of five years.  In 

Uganda, demographic and health surveys for instance are carried out regularly, usually after 

every five years. These surveys help in monitoring the trend in the country‘s performance on a 

number of indicators for instance those related to health and poverty. However, the sampling 

allows estimates only to be derived for large regional clusters and at times with few over-

sampled areas in the country. Using national surveys, direct estimates like under-five mortality at 

district level are considered to be unattainable. For instance, the Demographic and Health Survey 
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2006 provides direct estimates for nine regions and for the over sampled areas of Karamoja
1
 and 

the internally displaced camps in the northern region of the country. In the era of 

decentralization, especially at the district level, estimates for under-five mortality from such 

surveys using direct estimates are not achievable except by the application of small area 

estimation. Estimates like under-five mortality for the lower domains including the district level 

can only be achieved through use of small area estimation techniques which are usually avoided 

due to the advanced statistical modeling techniques that are involved. In this study, small area 

estimation techniques were used in a hierarchical Bayesian framework to show that one can 

derive relative risk of under-five mortality for districts in Uganda. 

 

The conventional way to estimate relative risk of under-five mortality is to use the standardized 

mortality ratio (SMR) across different geographical districts. Direct use of SMR may not be 

worthwhile, particularly for small areas like districts (Bailey, 2001; Julious, Nicholl, & George, 

2001b; MacNab, Farrell, Gustafson, & Wen, 2004; Meza, 2002), as it does not take into account 

the high variability for different population sizes over different regions and the spatial patterns of 

the regions under study. Use of SMR is based on ratio estimators and hence can yield large 

changes in the estimate, with relatively small changes in expected value (Downing, Forman, 

Gilthorpe, Edwards, & Manda, 2008; Lawson, Browne, & Rodeiro, 2003; Lawson & Williams, 

2001).  The use of hierarchical Bayes approach in small area estimation has been highly 

recommended as it smoothes the relative risks and provides the measures of uncertainty 

associated with these estimates of relative risk and the modeling can take into consideration the 

                                                 
1Area characterized by socio and economic hardships due to cattle rustling and unpredictable and hostile weather 

conditions 
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spatial autocorrelation. The approach to smoothing in the hierarchical Bayesian approach is by 

borrowing strength values from geographically referenced neighboring values.   

 

In Uganda, estimates of under-five mortality have been only at national and regional levels. 

Reliable estimation of district parameters from survey data can accurately be achieved using 

small area estimation techniques. Due to the laborious and high statistical modeling that is 

involved in estimating relative risk of under-five for the district, these methodologies are usually 

avoided and policy makers tend to rely on regional estimates.   

  

1.4 Scope of the Study 

This study focused on small area estimation techniques that derive best predictor of relative risk 

of under-five mortality using a hierarchical Bayes framework. The study also compared the 

hierarchical Bayes framework with the SMR approach. The study utilized UDHS data sets of 

1995, 2001 and 2006 to obtain variation over this period of time.  

 

1.5 Research Objectives 

The general objective of the study was to demonstrate the effectiveness of SAE techniques; 

particularly using under-five mortality data from Uganda. Specifically the study aimed: 

i. To demonstrate the accuracy of a hierarchical Bayes framework, over the traditional 

SMR techniques. 

ii. To establish a suitable model taking into consideration spatial autocorrelation that 

brings best predictor of relative risk of under-five mortality.  
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iii. To determine variation of relative risk of under-five mortality in Uganda, at the 

district level over the years 1995 to 2006. 

iv. To determine areal pattern on relative risk of under-five mortality   

 

1.6 Research Hypothesis 

i. The SMR and the model approach using a hierarchical Bayes framework give the same 

results for the relative risk of under-five mortality 

 

1.7 Research Questions 

The research questions advanced in the study were the following 

 

i. Does spatial autocorrelation have an effect in determining relative risk of under-five 

mortality?  

ii. Are there no variations for relative risk of under-five mortality over a period of years 

1995 to 2006 in Uganda? 

iii. Are there spatial pattern for the relative risk of under-five mortality in Uganda? 

 

1.8 Significance of the Study 

This study demonstrates that modeling approach through use of the log-normal, Poisson-gamma 

and the BYM models yield better and more stable results than the traditional SMR. Although 

Maiti‘s study of 1998 is closely related, the study did not utilize the Poisson-gamma model and 

did not make a comparative analysis with the SMR. The Maiti study makes criticism about the 

use of SMR only based on literature but the results do not show to what extent HB results are 

better than those derived from the SMR. This study also demonstrates the use of small area 

estimation techniques to derive relative risk of under-five mortality for districts in Uganda. The 
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study produced outputs that are handy to districts to address under-five mortality. The study 

demonstrates the use of the national survey data by applying small area estimation technique to 

derive relative risk of under-five mortality up to district level. Districts with high relative risk of 

under-five mortality can be targeted for increased resource funding and mobilization. 

Furthermore, the study demonstrates that with the increase in the number of districts (from 37 in 

1995 to 56 by 2006 in the survey data) and yet the sample size has not substantially been 

increasing, use of SMR becomes extremely unstable compared to the use of HB model approach 

which borrow strength from the neighboring districts to smoothen the estimate on relative risk of 

under-five mortality. The study provides a code fragment in WinBUGS 1.4 software that can be 

re-used in similar national surveys for Uganda or other countries.  

The study helped to show the variation for the period 1995 to 2006 for the relative risk of under-

five mortality at district level in Uganda though analysis was carried out independently for each 

year due to limited coverage as a result of insecurity for survey data of 1995 and 2001.  

 

1.9 Limitations of the Study 

The study used data from national surveys that have inherent gaps such as lack of data on 

children for women who had died though attempts were made to address them arising from the 

fact that only surviving women aged 15-49 years were interviewed. However, since the inherent 

problems are likely to be uniform across different districts, their effects on relative risk can be 

assumed to be uniform as well and less likely to affect relative risk of under-five mortality 

estimates. 

 

Due to varying structure in the various datasets used in this study, a trend analysis in one model 

could not be achieved. For instance, some districts in 1995 and 2001 DHS were not covered due 
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to insecurity in some parts of the country. The data set for 2006, however, covered the whole 

country and hence was more reliable compared to the 1995 and 2001 DHS dataset. To this effect, 

analysis was done by looking at different datasets independently to show variation over time 

rather than obtaining trend.  

 

1.10 Ethical Issues 

This study was approved by Makerere University School of Graduate Studies. Permission to use 

the raw data was obtained from Macro International. 
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CHAPTER TWO: LITERATURE REVIEW 

This chapter provides literature on studies done in relation to small area estimation techniques 

and those related to under-five mortality.  The literature focuses mainly on studies done in the 

areas of under-five and child mortality and related to small area estimation.  The chapter 

concludes with the conceptual framework used in the study. 

 

2.1 SAE Studies Related to Under-five Mortality 

Clayton and Kaldor (1987) applied Empirical Bayes (EB) estimation to data on observed case, yi, 

and expected cases, Ei, of lip cancer registered during the period 1975-1980 in 56 counties (small 

areas) of Scotland. They reported the direct estimates, Standardized Mortality Ratio (SMR), the 

EB of 
i

  based on the Poisson-gamma model and the approximate EB estimates of  
i

  based on 

the log-normal model and the CAR-normal model for the 56 counties. Their findings indicate 

that SMR-values had a very wide variability compared to the other two EB estimates across 

counties.  Leyland & Davies (2005) compared the Empirical Bayes methods with full Bayes 

methods for small area and their conclusion was that both methods have their place. Law, Serre, 

Christakos, and Leone (2004) carried out a spatial analysis and mapping of sexually transmitted 

diseases to optimize intervention and prevention strategies in North Carolina. Law, et al. (2004) 

used a simple Kriging geostatistical technique and argues that the methodology produces disease 

estimates with minimal mean square errors. Their study also points out that various types of 

kriging have been used in past epidemiological research work including simple, ordinary, and 

intrinsic kriging.   
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A study by MacNab et al., 2004 evaluated different approaches for relative risk inference to 

include the following; hybrid MCMC for Bayes analysis, type III parametric bootstrap, the 

carlin-gelfand sample reuse method and the penalize quasi-likehood (PQL) method for empirical 

Bayes. Their paper shows that the PQL is easy to implement and is computationally efficient.    

 

 

Rao (2003) shows that small area estimation techniques can be used on mortality and disease 

rates for a given region or a county. Such maps are used to display geographical variability of a 

disease and identify high-rate areas warranting intervention. A simple small area model is 

obtained by assuming that the observed small area count, yi, are independent Poisson variables.  

 

Gangnon and Clayton (2003) proposed a Bayesian approach for inferencing the parameters of a 

hierarchical model of spatial clustering. In this approach, the disease rate of each region was 

explained through a combination of non-spatial fixed effects, spatial clustering effects, and 

spatially unstructured random effects. Here the non-spatial fixed effects component of the model 

consisted of a single parameter relevant to the overall rate across the study region, and the 

random effects were assumed to follow a normal distribution. The authors used the gamma prior 

distribution. Gangnon and Clayton paid most attention to modeling the spatial clustering effects, 

i.e. the relative risk for each region, which is the sum of log relative risks for potential clusters 

for each region.   

 

One limitation of the Behavioral Risk Factor Surveillance System (BRFSS) data collected in the 

USA, is that valid estimates can only be obtained for states and larger geographic regions. 

Limited health data are available on the county level and, thus, many have used small-area 
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analysis techniques to estimate the prevalence of disease for the county level using BRFSS data 

(Goodman, 2010; Knutson, Zhang, and Tabnak, 2008). Jia, Muennig and Borawski (2004), used 

three methods of SAE including the synthetic method, spatial smoothing, and regression using 

the BRFSS data. The three small-area analysis methods were then applied to 2000 BRFSS data 

to examine how well each technique predicted county-level disability prevalence. Their results 

show that regression method produced the most valid and precise estimates of county-level 

disability prevalence though Kleinschmidta, Bagayokob, Clarkec, Craiga, and Le-Sueura, 2000 

tend to disagree with the method when used alone, that results have a tendency to produce 

predicted values that are pulled towards the mean. Schneider, Lapane, Clark, and Rakowski 

(2009) equally used the same dataset with synthetic method to derive small area estimates for 

mammography, a study of the breast using x-ray, for women aged 40 to 79 years up to county 

level. Schneider et al. explains that the method allows documentation of geographic disparities 

and improves understanding of the spatial distribution of mammography prevalence. In yet 

another closely related study, Knutson, et al., (2008) used small-area estimation method by 

including individual and community data in a generalized, linear, mixed-effect model in a breast 

cancer study.  In a cancer study, using SAE techniques, Maiti (1998) used the generalized linear 

mixed model (Logistic regression). In Maiti‘s paper, he also considered a CAR spatial model to 

generate estimates for lip cancer incidence in Scotland for each of 56 counties. 

 

In a study by Alexander, Moyeed, and Stander (2000), the authors looked at individual-level 

counts of nematodes, a parasite of humans which causes the disease lymphatic filariasis. They 

used the negative binomial distribution with the argument that the shape parameter is a 

convenient index of over-dispersion.  The negative binomial model is supported by Anderson 
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(1993) for which parasite counts are usually over-dispersed relative to the Poisson distribution. A 

related study by Lord (2006), show that a low sample size can potentially affect results from a 

Poisson-gamma model.  

 

Adebayo and Fahrmeir (2005); Khatab and Fahrmeir (2009), used a Bayesian approach to 

analyse child mortality in Nigeria and Egypt respectively using geoadditive models. The 

application was based on the Demographic and Health Survey data in the respective countries. 

Other related studies include; Adebayo, Fahrmeir, and Klasen (2004); Kandala, Ji, Stallard, 

Stranges, and Cappuccio (2007).  In these studies, the strength lies in the fact that they took into 

account the time element of the age at deaths of the child and included covariates in their models. 

Adebayo and Kandala studies however, provide results more for the regional clusters than 

actually the district (state) specifics. Adebayo‘s attempt to show district level burden of child 

mortality is merely based on relative frequency, a ratio of observed deaths to the total number of 

child which is more of SMR.   

 

Empirical Bayes methods in particular have been criticized in favour of the Hierarchical Bayes 

method for not providing measure of variance of the relative risk estimate (MacNab, et al., 

2004).  However, Maheswaran, et al. (2006); Zhu, Carlin, English, and Scalf (2000) supports 

both the Hierarchical Bayes and empirical Bayes methods with a view that they have proven 

effective in smoothing crude maps of disease risk, eliminating the instability of estimates in low-

population areas while maintaining overall geographic trends and patterns.  Zhu, et al. (2000) 

extended the Hierarchical Bayes method which relates traffic density to pediatric asthma 

hospitalizations (disease counts- Yi) with basic idea of modeling the number of disease events in 

region i, Yi , as a Poisson random variable. Similarly, the Poisson Bayesian hierarchical model 
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was used by Haininga, et al. (2010) in estimating the relative risk of stroke from air pollution 

exposure using small area data.  

 

A study by Ramis-Prieto, et al. (2007) compared models based on the Bayesian hierarchical 

models for modeling of Municipal mortality due to hematological neoplasias in Spain. The 

models included the Besag York and Mollie (BYM) model and a model based on zero-inflated 

Poisson (ZIP) distribution. They used the Deviance Information Criteria (DIC) to test for the 

goodness of fit. Their results showed that the models actually yielded similar results. The 

selection of the better model with a lower DIC was also used by Earnest, et al. (2010) in a similar 

study on small area estimation of sparse disease counts. A comparative study between the 

Poisson kriging and the BYM model for mapping disease risks show that more attention should 

be paid to the spatial and distributional assumptions underlying the BYM model. The Poisson 

kriging offers more flexibility in modeling the spatial structure of the risk and generates less 

smoothing, reducing the likelihood of missing areas with  a high relative risk (Goovaerts and 

Gebreab, 2008). 

 

Lawson, et al. (2000) evaluated the goodness-of-fit for the various small area methods and their 

finding show that the gamma-Poisson exchangeable model and the BYM were the most robust 

across a range of diverse models. The mixture models were less robust while the non-parametric 

smoothing methods performed badly. It was also concluded in their study that the linear Bayes 

methods displayed similar behavior as that of the Poisson-gamma methods. 

 

Waldhoer, Wald, and Heinzl (2008) used the multivariate modeling of indirectly SMRs using the 

MCMC methods implemented in WinBUGS software based on observed and expected counts in 
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the analysis of spatial distribution of infant mortality by cause of death in Austria for the period 

1984 to 2006. Important to note in their study is the fact that two adjacent districts which had 

small number of deaths were combined in the analysis and such aggregation is also supported by 

Arul, et al. (2007). Waldhoer, et al. (2008) used the conditional autoregressive model (CAR) also 

known as a BYM or a convolution model introduced by Besag et al. They argued that this model, 

assumes that the observed number of counts in spatial unit i is Poisson distributed with 

expectation μi. One reason for its popularity is that it is a straightforward estimation by the 

MCMC techniques e.g. using WinBUGS software. The BYM model is supported by Arul, et al. 

(2007); Downing, et al. (2008); Earnest, et al. (2007); Goovaerts and Gebreab (2008) for it 

smoothes relative risk estimates in each region towards the mean risk using the neighboring 

areas. They argue that the BYM model provides for a more precise or reliable estimate of both 

mean and variance compared to using the crude rate of SMR. This is especially so, as the 

variance for the estimate of the raw rate with a small expected count can be large and unreliable 

under the crude SMR. Risks are also smoothed towards the global mean to account for 

overdispersion caused by unobserved confounding factors (Bailey, 2001; D.  Clayton and 

Bernardinelli, 1996; Mollie, 1995). Similar studies in using the CAR and Poisson spatial models 

were utilized by López-Abente, et al. (2008) on individual death entries for the period 1989–

1998 corresponding to kidney cancer mortality in Spain, broken down by town or city, 

nationwide. SAS (2010) attributes overdispersion to positive correlation among the observations, 

an incorrect model, an incorrect distributional specification, or incorrect variance functions and 

shows that the Bayesian hierarchical Poisson regression models are effective in capturing 

overdispersion and provides a better fit. 
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A study by Downing, et al. (2008) modeled jointly the incidence rates of six smoking related 

cancers in the Yorkshire region of England, to explore the patterns of spatial correlation amongst 

them, and estimated the relative weight of smoking and other shared risk factors for the relevant 

disease sites, both before and after adjustment for socioeconomic background. Their conclusion, 

indicate that incidence estimates are more precise than those obtained without smoothing. A 

similar study by Randramanana, Richard, Rakotomanana, Sabatier, and Bicont (2010) used a 

Bayesian approach, to measure the associations between the spatial variation of TB risk and the 

national control program indicators for all neighborhoods in Madagascar. Randramanana et al., 

recommends the use of spatial approaches for assessing the epidemiological situation for TB. 

 

 

2.2 Use of Standardized Mortality Ratio 

Use of SMR has however, been subjected to a number of criticism with the fact that they can 

yield very large values for any positive count (Lawson, et al. 2003). Approach to the 

improvement of the relative risks estimates when SMR are used, is to employ smoothing tools to 

reduce the noise. One such approach is to use small area estimation techniques in a hierarchical 

Bayes framework by pooling information from the geographical referenced neighboring areas 

(Graham, 2008; A. B. Lawson, et al., 2003; Ocaña-Riola, 2007; Rao, 2003). 

A study by Julious, Nicholl, and George (2001a) recommends that use of SMR should be 

avoided where necessary. A Comparative study that used  a regression-adjusted mortality to 

standardized mortality ratios for trauma center (Moore, Hanley, Turgeon, and Lavoie 2012) 

reveals that the latter is an inferior method to the former and provides biased results. Other study 

(Symons and Taulbee, 1980) has shown that when the true relative risk is greater than 100%, the 

SMR over-estimates relative risk no matter how small the mortality rates are.   
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There are however, studies where SMR appears to have worked well (Kahn, Kramer, and 

Rubenfeld, 2007; Mok, Kwok, Ho, Chan, and Yip, 2011; Walsh, et al., 2012) though it is mainly 

recommended to derive relative risk for large geographical regions such as countries or states, 

but may be unreliable for small areas such as counties (Meza, 2003).  

 

2.3 Methodologies for Estimating Under-five/Child Mortality 

This section provides discussions on the methodologies available for estimation of under-five 

mortality as a key aspect in this study. The study concludes with reasons as to why traditional 

methodologies of estimating under-five mortality do no not provide estimates of up to district 

level in Uganda. 

 

Under-five estimates in Sub-Sahara Africa have tended to use DHS. A study by Korenromp, 

Arnold, Williams, Nahlen, and Snow (2004) show that the DHS estimate in Sub-Sahara Africa 

on under-five mortality rates use complete birth histories, based on reports from mothers on the 

survival of their children. The direct estimation technique is based on a life table approach: 

probabilities of dying are computed from reported dates of birth and death and the numbers of 

children of a particular age exposed to the risk of dying during a specified period.  

  

In countries with complete vital registration systems that capture all births and deaths, under-five 

mortality can be calculated using direct or indirect demographic techniques (Rajaratnam, N., 

Lopez, and Murray, 2010). In the absence of a complete vital registration system especially in 

developing countries, under-five mortality is estimated using censuses and surveys (Chowdhury, 

Islam, and Hossain, 2009). In Uganda, under-five mortality rates have been typically computed 
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using two approaches — direct and indirect techniques by utilizing censuses and surveys. For 

this study, direct estimates could be computed from the three Uganda Demographic and Health 

Surveys of 1995, 2001 and 2006 from data collected using the birth of a woman aged 15 – 49 

years. However, due to lack of necessary data in all the three surveys, indirect techniques are a 

feasible alternative. The underlying assumptions used in the indirect methods can introduce a 

potential bias in the estimate. Studies have shown that for many Sub-Saharan countries, even if 

an appropriate mortality model is applied in the indirect estimation method, the results of this 

method are consistently higher than those of the direct methods (UBOS and Macro International, 

2007). The best-known and most widely applied indirect estimation method was developed by 

William Brass in 1968. The method measures under-five mortality from dead children as a 

proportion of those ever born by women classified by age group (Hill and Figueroa, 2001). The 

basic principle of the method is that the age of the mother can serve as a proxy for the exposure 

time of her children, so that the proportion dead for women of a given age group can be 

converted into a defined probability of dying for their children. The method by William Brass 

has been applied to census and survey data from all parts of the developing world, and has been 

found to work remarkably well in a wide variety of settings (Hill and Figueroa, 2001).    

 

The original method has been extended by a number of authors, notably Sullivan (1972), who 

included groups of women classified by age. In a modification of Brass‘s technique, Sullivan 

(1972) developed a simple linear regression model. Trussel (1975) later expanded the model base 

of the estimation methods (UN, 1983).   

 

Although the Brass method is popular for estimation of under-five mortality, it has been 

subjected to criticism. One of the key assumptions underlying the Brass method is that under-
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five mortality risks are uniform across the classificatory variable (age or duration of marriage of 

the mother) being used as a proxy for exposure to risk of the children. However, younger women 

aged 15-24 are almost always having higher estimates compared to older women. This pattern 

results from a real age effect, whereby children of young mothers have elevated mortality risks 

and also from a selection effect whereby women of lower socio-economic class tend to start 

childbearing early and have children exposed to above average mortality risk (Hill and Figueroa, 

2001), 

 

Using indirect techniques, the Trussel method which was developed in 1975 can be used in 

computing the under-five mortality. The Trussel method uses data classified by five-year age 

group of the mother. In particular, the number of children ever born, number of children 

surviving (or the number dead) and the total number of women (irrespective of marital status) 

can be considered in the computation of the under-five mortality.  It is important to note that both 

the Brass, Sullivan and Trussel methodologies for determining under-five mortality using survey 

data cannot derive estimates up to district level where the sample size is not representative of 

those districts. This limitation therefore makes the study on small area estimation relevant. It is 

also important to note that under-five mortality is derived from the DHS data using direct 

estimation techniques and this study adopted these estimates.  

The number of deaths (yi), are usually based on a specified period of time – usually 5 or 10 years 

before the survey (WB, 2008). In this study to gain enough observations for the model a longer 

period was used for up to 35 years.  
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2.4 Conceptual Framework 

The conceptual framework below is an illustration of the hierarchical approach used to estimate 

relative risk of under-five mortality (θi). To derive θi, the observed values yi are necessary in 

other words we are estimating θi given the data (yi) or simply expressed as f(θi|yi), usually 

referred to as the posterior distribution.  Let α and β be the parameters associated with the 

posterior distribution. The posterior can then be expressed in terms of the likelihood ( (f yi |θi)) 

and prior distributions g1(θi|α,β) g2(α|β) g3(β) as shown in equation 2.1. 

(f θi|yi) ∝ (f yi |θi) g1(θi|α,β) g2(α|β) g3(β) ………………………………………….2.1 

 

At the first level of the hierarchy, g1(θi|α,β) and g1 can be assumed to follow a gamma 

distribution. We can also have the second level (g2(α|β)) and the third level g3(β)  but can be 

terminated at the first level (see Figure 2.1). 
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CHAPTER THREE: METHODOLOGY 

This chapter looks at the methodologies that were used in the study, commencing with a brief 

description on the meaning of small area estimation.  The chapter provides discussion on the data 

sets that were utilized. The chapter provides discussion on the commonly used method for 

estimating relative risk using the SMR. Various models used under the Bayesian Hierarchical 

framework (Poisson-gamma, log-normal and the Besang, York and Mollie Models) for 

estimation of relative risk of under-five mortality are also presented. The Bayesian Hierarchical 

models or framework is one of the various statistical techniques under the broader subject of 

small area estimation. The chapter provides discussion on the prior distributions that were used 

under the Bayesian Hierarchical framework. The chapter concludes with the ethical 

consideration and assumption made in the course of the study. 

 

3.1 Data Description: Sources and Weakness 

The study utilized data obtained from the Uganda Demographic and Health Surveys (UDHS) of 

1995, 2001 and 2006. This section provides discussion on the three data sets that were used in 

the study; their sources and weakness. 

 

The UDHS survey of 1995 covered a total of 37 districts and due to insecurity, the district of 

Kitgum located in the northern part of the country was not covered. By the time of the survey, 

Uganda had a total of 38 districts. A sample of 303  Primary Sampling Units (PSUs) consisting 

of  Enumeration Areas (EAs) were selected from a sampling frame of the 1991 Population and 

Housing Census and covered a total of 7,070 women in the reproductive age group of 15 – 49 

years. The survey also obtained data from a total of 7,550 households and 1,996 men in a 
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reproductive age group of 15-54 years. The country was clustered into four regions consisting of 

Central, Eastern, Northern and Western. To permit calculation of contraceptive prevalence rates 

under a USAID-funded project called Delivery of Improved Services for Health (DISH) a 

sample design allowed for over sampling of households in the nine districts. These districts were 

Kasese, Mbarara, Masaka, Rakai, Luwero, Masindi, Jinja, Kamuli and Kampala. 

 

The UDHS data of 2001 covered a total of 34 districts and again due to insecurity the districts of 

Kasese and Bundibugyo in Western Region as well as Gulu and Kitgum in the Northern region 

were excluded from the survey. A sample of 298 PSUs consisting of  EAs were selected from a 

sampling frame of the 1991 Population and Housing Census and covered a total of 7,246 women 

in the reproductive age group of 15 – 49 years. The survey equally obtained data from a total of 

7,885 households and 1,962 men in a reproductive age group of 15-54 years. The country was 

also clustered into four regions consisting of Central, Eastern, Northern and Western. To permit 

calculation of contraceptive prevalence rates under DISH project the nine districts were again 

over sampled. Over sampling of EAs was also carried out for the districts of Kabale, Kisoro and 

Rukungiri under the project called Community Reproductive Health Project (CREHP).  

 

As compared to the UDHS of 1995 and 2001, the survey of 2006 covered all the 56 districts of 

the country providing a better estimate of relative risk of under-five mortality. It is important to 

note that the number of districts in the country have continued to increase to currently over 110. 

A sample size of 321 PSUs consisting of EAs were selected from a sampling frame of the 

clusters sampled in the 2005-2006 Uganda National Household Survey and an additional 47 EAs 

were over sampled from the North Eastern Region (Kotido, Moroto and Nakapiripirit) and IDP 
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camps in the districts of Gulu, Kitgum, Lira and Pader. The over sampled areas were mainly 

aimed at obtaining specific baseline indicators due to insecurity that ravaged the region for over 

20 years prior to the survey. The country was clustered into nine regions compared to the four 

covered in the prior surveys. The nine regions included; Central 1, Central 2, Kampala, Eastern, 

East Central, North, West Nile, Western and South Western (See Figure 3.1). In general, a total 

of 8,531 women in the reproductive age group of 15 – 49 years were interviewed. The survey 

equally obtained data from a total of 8,870 households and 2,503 men in the reproductive age 

group of 15-54 years. 

 
 

Figure 3.1: Map of Uganda showing clusters used in UDHS 2006 
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In each of the UDHS of 1995, 2001 and 2006 the main variable used in this study (under-five 

deaths) was collected from women in a reproductive age group of 15–49 years. 

 

Data was accessed with permission from MeasureDHS website. This research work used under-

five mortality rather than other mortality measures like infant or child mortality due to the fact 

that significantly larger and more samples are obtainable. Additionally, the indicator is in line 

with the MDGs target to reduce under-five mortality by two-thirds between 1990 and 2015. The 

data used in the estimation of the under-five mortality rates were collected on the birth history of 

women aged 15-49 years. For children who had died, the mothers were asked to provide the age 

at death. The data used for computation of under-five mortality is susceptible to some errors. 

Firstly, only surviving women aged 15-49 years were interviewed; therefore, no data are 

available for children of mothers who had died. Another possible error in data collection is 

underreporting of events (births and deaths), especially in cases where deaths occur early in 

infancy. Attempts to address under reporting of age at deaths were done by recording days if the 

death took place within one month after birth, in months if the child died within 24 months, and 

in years if the child was two years or older (UBOS and Macro International, 2007).  

3.2 Use of SMR 

3.2.0 Introduction 

 

The SMR is defined as the number of observed deaths in the study population divided by the 

number of expected deaths (Last, 2001). If the SMR is greater than one (1) means the number of 

observed deaths is greater than what would be expected if the study population had the same 

probability of dying as the standard population, while an SMR of less than one (1) means the 

number of observed deaths is less than expected. 
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3.2.1 Computation of Relative Risk 

 

There are two principal categories of estimation methods for calculating under five mortality 

rates: direct and indirect. The direct methods employ data on the date of birth of children, their 

survival status, and the dates of death or ages at death of deceased children. The indirect methods 

use information on survival status of children to specific age cohorts of mothers. The indirect 

methods can utilize data that are commonly collected in censuses and surveys: the number of 

children ever born and their age. However, direct and indirect estimation techniques of under-

five mortality cannot provide estimates up to district level from available survey data. The 

simpler way is to use a SMR approach which has traditionally been used as an estimate of 

relative risk of under-five mortality. Let yi and Ei denote the number of deaths and the expected 

number of deaths respectively from the disease during the study period. The Standardized 

Mortality Ratio (SMR) is defined as; 

i

i

i

E

y
̂ ……………………………………….……………………………………………………3.1 

 

Generally the expected number of deaths Ei is assumed known (Bailey, 2001). Let rj be the 

under-five mortality rate in the j
th

 region and pij is the population in the i
th

 district located in the 

j
th

 region. The formula for the computation of expected deaths is then given as; 

ijj ji
prE  ………………………………………………………………………...…3.2 

  

3.2.2 Computation of Expected Value  

Computation of expected value for the under-five was based on estimated population in age 

group below five years and the under-five mortality rate for a given region. To estimate the 

population below five years, this study utilized the census figures of 2002 together with the 
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exponential growth function. For instance, Adjumani district located in the North Western part of 

the country had a population of 202,290 by the year 2002. In 2006, Adjumani district had under-

five mortality rate of 177 deaths per 1,000 live births. To estimate the population for the district 

by the year 2006, the following exponential growth rate function was used; 

rt

t
eNN

0


 ……………………………………………………………………………….………3.3
 

 

Where Nt is the population estimate for Adjumani for the year 2006 based on census figures of 

2002 after a time period (t) of four years. A population growth rate (r) of 3.4 percent with about 

19.2 percent of the population below age of five years (UBOS, and Macro International, 2007) 

was used. N0 is the population census figure of 2002. Using equation (3.2) the expected deaths 

below the age of five in the district of Adjumani provides a figure of about 7,876 cases by year 

2006 (See Appendix 5).  

3.2.3 Computation of Standard Deviation, Standard Error and Coefficient of Variation for the 

Relative Risk 

 

Let yi and Ei refer to the number of observed deaths and expected number of deaths among 

under-five in a given district respectively.   

  

The standard deviation (s.d) for the SMR is given as (Soe and Sullivan, 2006); 

s.di=

i
y

1

 ………………………....…………………………………………………….3.4 

 

 

The standard error (s.e) for the SMR is given as; 

s.ei = 

i

i

y

E

………………………………………..……………………………………..3.5 
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Coefficient of variation is then defined as; 

100*
.

i

i

i

SMR

ds
cv 

…………………………………………………………………...….3.6
 

 

 

3.3 Small Area Estimation Methodologies 

This section looks at the different models used under the Hierarchical Bayes framework that 

were used in this study. The models discussed include; Poisson-gamma, log-normal and the 

Besang, York and Mollie (BYM). The section also provides discussion on the different priors 

that were used in the models. 

  

3.3.1 Poisson-gamma Model 

 

In a Bayesian setting, we have a random sample y1,…,yn from a Poisson(Eiθi) distribution for 

counts events. Where y1,…,yn are the under-five deaths from n districts while θi are the relative 

risks for i=1,….n districts to be estimated.  We are interested in obtaining the posterior. The 

posterior is the product of the likelihood and the prior distributions and all the inference about 

parameters are made from the posterior distribution i.e 

Posterior ∝ prior . likelihood 

 

Or 

 

g(θi|y1,…,yn)∝ g(θ) f(y1,…,yn|θi). ……………………………………………………….………3.7 

 

The likelihood of a Poisson distribution is a product of the original likelihoods which simplifies 

to: 

i
n

n

i

n

i
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




 

 
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)|( ………………………………………………………………3.8 
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A Hierarchical Bayesian Method was used due to the fact that in each area-specific prevalence 

an advantage of pooling information from neighboring areas or a prior distribution is utilized 

(Bergamaschi, et al., 2006). The Hierarchical Bayesian methods have an important role in 

modeling complexity of data structures in spatial epidemiology. The Bayesian approach in small 

area modeling consists of considering, in addition to the likelihood of the observed counts, prior 

information on the variability of the relative risks which subsequently is considered to improve 

the estimates from the posterior.  

 

A Poisson model is considered a basic one with parameter Eiθi and is referred to as a classical 

model (SMRs). The other models like log-normal and the Besag, York and Mollie (BYM) model 

are extensions of this classical model (Lawson, et al. (2003). The Poisson-gamma model is 

suitable for non-contagious and rare cases, where the numbers of deaths in each area are assumed 

to be mutually independent and hence follow a Poisson distribution. It was therefore imperative 

for this study to begin with the basic classical model and then proceed to evaluate whether there 

is benefit in using other models. 

 

 

The Poisson models in general are used when the dependent variable is a count of rare events 

like accidents and deaths among the population.    

Let Y be the vector for the under-five deaths in districts. At the level of direct estimation, Y 

follows a Poisson distribution given by; 

…………………………………………………………………………………………...3.9 

For y=0,1,2,…,  >0 
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Let n be the number of districts under consideration.  Let 
i

  be the relative risk of a disease for 

area i (i=1,…,n) in reference to the under-five mortality rate pj in stratum j (region). The problem 

is to estimate 
i

 (i=1,…,n) and its variance or standard deviation. Let yi denote the observed 

number of death in district i (i=1,…,n) observed over a period of time. Let Ei be the expected 

deaths in area i (i=1,…,n) and considered to be known. yi’s represent the observed values of 

under-five deaths and is assumed to be independent Poisson random variables with parameter 

(θiEi) and with mean   and variance 2
 . Using the hierarchical models and the gamma 

distribution considered for  
i

  then we have; 

yi~Poisson(θiEi); independently, i (i=1,…,n); ………………………….………….........3.10 

given one set of data (dependent), y (referring to yi) and similarly for the relative risk (θ) , then 

the general distribution in the hierarchical Bayes framework is given as; 

f(θ|y)= ))f(|(
f(y)

))f(|(



yf

yf
 ………………………..……………...……………3.11 

 

That is the posterior is proportional to the product of the likelihood and the prior distribution. 

The likelihood is given as;  
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The prior distribution f(θi) is assumed to follow a Gamma distribution with parameter α and β>0 

i.e θi~Γ(α,β) then the probability density function is given as; 
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Where 




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Using equation 3.11, then the resulting posterior distribution is given by; 
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with the mean given by (Lawson, 2003); 

E[θi|yi,α,β]=
i

i

E

y








 ……………………………………………...……………………3.15 

One disadvantage of the Poisson-gamma model is its inability to cope with spatial correlation. 

Presence of spatial correlation in the model violets the assumption of independency with the 

Poisson-gamma model. Models that suitably takes into account spatial correlation are; log-

normal and the BYM (Lawson, et al., 2000; Lawson, et al., 2003).  

  

3.3.2 Log-normal Model 

 

The basic model of the Poisson when assumed to be independently distributed is subject to a 

number of problems. These problems include the fact that spatial correlation within the districts 

can affect the sampling distribution under the standard Poisson model (Rodeiro and Lawson, 

2004). Lawson (1994) proposed two approaches; first, a standard Poisson model could be 

assumed and the residual from the fit could be examined for the spatial autocorrelation. If the 

residuals are effectively independent and identically distributed (i.i.d) then independent 

assumption is tenable.  The second approach is where there is pure autocorrelation in the data in 

which a model that includes autocorrelation could be admitted.  
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If spatial autocorrelation in the residuals exist, it means that the model is systematically 

overestimating the observed values in some districts, and underestimating the observed values in 

other districts. In addition, we will get unrealistic values for the significance and confidence 

limits for the coefficients, especially if we assume that the mortality in one district is independent 

of the other neighboring district. If there is correlation between them, they are not independent 

implying that model estimations will be biased.   

 

The other assumption made in the basic Poisson model is that the mean and variance are equal. 

Sparseness of data or a large incidence of zero counts like in mortality data may bring in extra 

variation and may cause violation of the mean-variance assumption. In this case, extra Poisson 

model has been proposed where )()var(
ii

E    by introducing a factor  . Negative binomial 

or zero-inflated Poisson models have also been proposed in solving violation of Poisson model 

assumption (Lambert, 1992). In the hierarchical Bayes method, random effects modeling is often 

used to deal with the problem of over dispersion in modeling count data. A study by Catelan, 

Lagazio, and Biggeri (2010) show that the Poisson-gamma and  BYM models can account for 

extra Poisson variability in a Bayesian formulation. Geographical locations like district treated as 

small area in this study, may exhibit some form of spatial autocorrelation. The fact that the 

districts are simply clusters that were created for administrative purpose, neighboring ones may 

share similar socio-economic characteristics like terrain nature that may have for instance similar 

water source problems and hence may eventually exhibit similar disease patterns that could be 

correlated with under-five deaths (yi).  In this study the effect of spatial autocorrelation that may 

exist within the geographical location like districts was evaluated using autocorrelation plots.  

Lawson proposed a Log-normal model being suitable in taking into account spatial correlation. 
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Let vi measure the spatial random effects while measure the variance while α be an overall 

level of the relative risk. The Log-normal model proposed by Lawson, et al. (2003) and applied 

by Johnson (2004) is given as (i=1,…, n are independent); 

  
i

Y ~Poisson(θEi) ……………………..……………...……….……………...3.16 

 

  Log
ii

v   …………………………………………….….……….3.17 

  
i

v ~N(0, 2

v
 ) …………………………………………………….……...3.18 

Probability function of the Poisson-log-normal distribution is not available analytically 

(Ntzoufras, 2009). Ntzoufras however, shows that the mean and variance are given by; 

 

19.3.......................................................................................................e),|(
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3.3.3 Besag, York and Mollie (BYM) Model 

In this section we take into consideration a popular model introduced by Clayton and Kaldor 

(1987) and developed by Besag, York and Mollie after modifying the log-normal model 

described in equations 3.16 to 3.20. In this model for relative risk, area-specific random effects 

are decomposed into two components. One of the component accounts for the effects that vary in 

a structured manner in space (clustering or correlated heterogeneity). The second component 

models the effects that vary in an unstructured way between areas (uncorrelated heterogeneity). 

When undertaking CAR modeling, it is necessary to define an adjacency matrix that 

characterizes the neighborhood structure of the data being analyzed. There are several 

2

v

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approaches to doing this, including defining neighbors according to the distances between 

centroids and declaring two or more regions or districts to be neighbors if they share a boundary. 

A study by Best, Cockings, Bennett, Wakefield, and Elliott (2001) found out that the adjacency 

based neighborhood structure provided a better fit of the data than the distance approach, based 

on Deviance Information Criteria (DIC) comparisons. However, results by Arul, et al. (2007) 

found out the converse with the distance based matrix performing better than the adjacent based 

neighborhood structure. The use of centroid or distance approach appears not to offer a relative 

advantage over the other and may simply depend on the problem at hand. In this study, the 

neighborhood approach was used given the fact that data is not readily available on the centroid 

or distance matrix. 

Let  be an overall level of the relative risk, ui is the correlated heterogeneity and vi is the 

uncorrelated heterogeneity.  

 

Then under-five deaths Yi, is assumed to follow Poisson distribution thus; 

  Y
i
~Poisson(θEi) ……………………..………………………………..……...3.21 

 

  Log
iii

vu    …………………………………………………...3.22 

The distribution model for the uncorrelated heterogeneity is; 

  
i

v ~N(0, 2

v
 ) ………………………………………………………...….3.23 

For the clustering or regional component, a spatial correlation structure is used, where estimation 

of the risk in any area depends on neighboring areas. The conditional autoregressive (CAR) 

model is thus given; 

    2
,,|

uji
jiuu  ~N( 2

,
ii

u  ) …………………...………………3.24 





34 

 

Where  
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  

  wij = 1 if i, j are adjacent (or 0 if they are not). 

 

3.4 Priors used 

Bolstand (2007) proposed three different priors for the Poisson distribution to include;  

Positive uniform prior density, Jeffreys prior for Poisson and a gamma prior. Priors which are 

believed to have minimal impact on the posterior distribution are also often used and these are 

referred to as flat or noninformative or diffuse or vague prior. 

 

3.4.1 Positive Uniform Prior Density 

When there is no idea about the value of θi prior to looking at the data then equal weights can be 

assigned to the value of θi. Then a uniform prior density can be assigned i.e 

g(θi)=1 for θi>0 

……………………………………………………..…………………………………...3.25 

 

In this case, the posterior will be ∝ 1 . θi




n

i

n

i

iey

1



…………...…………..…...…..….3.26 

 

3.4.2 Flat, noninformative, or diffuse or vague prior   

 

A prior is noninformative if it has minimal impact on the posterior distribution. In the Poisson 

distribution, the   flat, uninformative, or diffuse or vague prior is given as; 
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 π(θ)=k=
ab 

1
            for a≤ θ ≤b …………………………………………………….……3.27 

 

This conveys the fact that we have no a priori reason to favor any particular parameter value over 

another. With a flat prior, the posterior is just a constant multiplied with the likelihood as given 

below; 

 

g(θi|yi)=CL(θi|yi) 

……………………………………………………………….…………..……………..3.28 

 

where C is a constant and L(θi|yi) is the likelihood function of θi given the data,y. 

 

3.4.3 Jeffreys Prior 

 

The Jeffreys prior for the Poisson is given as; 

g(θi)∝
i



1
 for θi>0 

…………………………………………….…………………………..…………..…..3.29 

 

Hence the posterior under Jeffereys prior will be; 

 

g(θi|y1,…,yn) ∝ 




n

i

n

ii

i

iey

1

1 


   ……………………………….…………………...3.30 

 

 

Both the positive uniform prior density, flat, uninformative, or diffuse and the Jeffreys priors for 

the Poisson are considered as improper since their integral over all possible values is infinite.  
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3.4.4 Gamma Prior 

 

Bolstand (2007) argues that when we have a single Poisson(θ) observation, the shape of the 

posterior using a gamma (α,β) is given by; 
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with the posterior mean and variance given respectively as; 

 

E(θi|yi)=  
1





 y
and var(θi|yi)= 

2

i

)1( 





 y
...…………………………………………..3.32  

 

Use of the Bayesian statistics are based on the fact that there is uncertainty about the true value 

of the parameter and hence considers them as random variable with a given distribution.  

Lawson, et al. (2003) show that for a Poisson with a gamma prior, then  

yi|θi~ Poisson (Eiθi) ………………………………………………………………....…3.33 

 θi|α,β~Gamma(α,β)………………….………………………………………....3.34 

α|υ~hα(υ) 

…………………………………………………………………….…..……………….3.35 

β|v~hβ (ρ) 

……………………………………………………..……………………..…………….3.36 

 

The above shows a distribution in a form of a hierarchy but can be terminated at second level 

(equation 3.35 and 3.36) and is described as the hierarchical Bayesian approach. 
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3.5 HB Model Selection 

 

Selection of the best model was assessed using the Deviance Information Criteria (DIC) 

supported by a number of studies (Earnest, et al., 2010; Ramis-Prieto, et al., 2007). DIC was 

introduced by Spiegelhalter, Best, Carlin, and Der-Linde, (2002) for model comparison. DIC is a 

hierarchical modelling generalization of the Akaike information criterion (AIC) and the Bayesian 

information criterion (BIC), also known as the Schwarz criterion. It is particularly useful in the 

Bayesian model selection problems where the posterior distributions of the models have been 

obtained by the Markov chain Monte Carlo (MCMC) simulation.   

 

Define the deviance as D(θ) = -2log(p(y|θ))+C, where ,y, are the data, θ, are the unknown 

parameters of the model and p(y|θ) is the likelihood function. C is a constant that cancels out in 

all calculations that compare different models, and which therefore does not need to be known 

(Spiegelhalter, et al., 2002). 

 

The expectation  )(


DED   is a measure of how well the model fits the data; the larger this 

is, the worse the fit. 

 

The effective number of parameters of the model is computed as, )(DDp
D

 , where   is 

the expectation of θ. The deviance information criterion is calculated 

as DpDIC
D
 ……………………………………………………………………....3.37 

The idea is that models with smaller DIC should be preferred to models with larger DIC (Chen, 

2009). Roughly differences of two models with more than 10 values points will show that they 
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are substantially different (Holsinger 2012). Differences in DIC less than 5 could be misleading 

to report the model with lowest DIC. The advantage of DIC over other criteria in case of the 

Bayesian model selection is that the DIC is easily calculated from the samples generated by a 

MCMC simulation (Berg, Meyer, and Yu, 2004; Spiegelhalter, et al., 2002). AIC and BIC 

require calculating the likelihood at its maximum over θi, which is not readily available from the 

MCMC simulation. 

 

3.6 Simulation 

WinBUGS version 1.4 software as recommended by Congdon (2001); Lawson (2008); Lawson, 

et al. (2003); Rao (2003) in the Bayesian setting was used to monitor convergence and to 

estimate the various model parameters. Convergence was assessed in particular by use of 

dynamic trace, Kernel density plots and the Gelman-Rubin scale reduction factor which are 

included in the WinBUGS 1.4 software. Figure 3.2 demonstrates part of the code that was used 

in the WinBUGS 1.4 software. In this study, the main parameters that were estimated were 

relative disease risk and the variance in the various models. 

model 

{ 

for (i in 1:N){ 

   y[i] ~ dpois(mu[i]) 

   mu[i]<-e[i]*theta[i] 

   theta[i]~dgamma(a,b) 

   } 

 

a~dexp(0.1) 

b~dexp(0.1) 

 

mean<-a/b 

var<-a/pow(b,2) 

} 

 

Figure 3.2: Code fragment used in the WinBUGS Software for Poisson-gamma Model 
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3.7 Assumptions 

In this study, the key assumptions made related to models developed were that the effects of 

neighboring countries are taken care of in the random error term. Additionally the within 

geographical boundaries defined by such features like lakes, rivers, mountains and forests are 

also taken care of in the random error term of the models used.   
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CHAPTER FOUR: SMALL AREA ESTIMATION: FOCUS ON UNDER 

FIVE MORTALITY DATA IN UGANDA 

 

4.1 Comparison of SMR to Poisson-gamma, Log-normal and the BYM Using 

UDHS 1995 Data 

The results presented in Table 4.1 show that the traditional method of estimation using SMR did 

not show variability from the model approach. This may largely be attributed to the fact that the 

numbers of districts were few by 1995 and the observed counts were fairly substantial. By 1995, 

there were a total of 38 districts although the demographic and health survey covered 37 due to 

insecurity in one of the districts. Compared to 2006 when the country had a total of 56 districts 

and even if the sample size had slightly increased, SMR showed more reliable and stable 

estimates with fewer districts for either 1995 or 2001.   

 

The standard deviation (sd) under Log-normal and the BYM models were higher than those from 

the Poisson-gamma model. However, the DIC for Log-normal and the BYM were lower under 

the Poisson-gamma model but not substantial to warrant a difference in the two models (less than 

10).  It was further observed that convergence for both models (Poisson-gamma, log-normal and 

the BYM) were achieved at 4,000 iterations. 

 

The results provided in Table 4.1 further show that the districts of Kalangala, Bundibugyo, 

Kamuli, Kiboga, Kotido, Mbarara and Kibaale had high relative risk of under-five mortality by 

1995. Kumi district also exhibited a slightly high relative risk of under-five mortality by about 

four percent compared to the national average. 
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Table 4.1: Comparison of RR from SMR, Poisson-gamma, Log-normal and BYM 

models using UDHS 1995 Data 

No. District under-

five 

deaths 

(yi) 

SMR Poisson-Gamma 

model 

(DIC=310.4)   

Log-normal 

model 

(DIC=305.4)    

BYM 

(DIC=305.9)   

1 Kalangala 21 4.16 2.09 2.66 2.65 

2 Bundibugyo 54 1.62 1.45 1.49 1.49 

3 Kamuli 221 1.19 1.17 1.17 1.17 

4 Kiboga 54 1.24 1.16 1.17 1.16 

5 Kotido 29 1.22 1.10 1.12 1.11 

6 Mbarara 295 1.11 1.10 1.10 1.10 

7 Kibaale 70 1.11 1.07 1.07 1.07 

8 Kumi 94 1.04 1.01 1.01 1.01 

9 Mubende 145 0.94 0.93 0.93 0.93 

10 Kisoro 49 0.92 0.90 0.89 0.89 

11 Masaka 228 0.88 0.88 0.88 0.88 

12 Rakai 83 0.70 0.70 0.70 0.70 

13 Pallisa 96 0.70 0.70 0.70 0.70 

14 Lira 145 0.70 0.70 0.70 0.70 

15 Jinja 76 0.68 0.69 0.69 0.68 

16 Arua 176 0.67 0.67 0.67 0.67 

17 Hoima 37 0.66 0.67 0.66 0.66 

18 Soroti 106 0.64 0.65 0.65 0.65 

19 Tororo 136 0.64 0.64 0.64 0.64 

20 Gulu 89 0.63 0.64 0.64 0.64 

21 Bushenyi 133 0.63 0.64 0.64 0.63 

22 Kabarole 134 0.63 0.63 0.63 0.63 

23 Nebbi 81 0.62 0.62 0.62 0.62 

24 Kampala 147 0.62 0.62 0.62 0.62 

25 Luwero 85 0.61 0.62 0.62 0.62 

26 Mbale 166 0.61 0.61 0.61 0.61 

27 Iganga 217 0.60 0.60 0.60 0.60 

28 Moyo 42 0.58 0.60 0.59 0.59 

29 Mpigi 152 0.54 0.54 0.54 0.55 

30 Kapchorwa 20 0.45 0.49 0.49 0.49 

31 Moroto 33 0.46 0.49 0.49 0.49 

32 Mukono 119 0.47 0.48 0.48 0.48 

33 Apac 87 0.46 0.47 0.47 0.47 

34 Rukungiri 49 0.44 0.46 0.46 0.46 

35 Masindi 28 0.38 0.41 0.42 0.42 

36 Kasese 34 0.35 0.38 0.38 0.38 

37 Kabale 34 0.29 0.32 0.32 0.32 
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 Coefficient of variation (CV) using SMR for the 1995 UDHS data show minimal 

variability or simply the standard deviations (sd) were small (Table 4.2). In all the cases 

for the 37 districts none of the CVs exceeded 60%. The results further show that when 

few districts are involved in estimation of SMR and when substantial data are provided, 

SMR appear to be a good estimator of relative risk of under-five mortality.  

 

The results obtained using UDHS data of 1995 generally show that there was no added 

advantage in using the model approach compared to the use of SMR. The CV from the 

models (Poisson-gamma, log-normal and BYM) were low with none exceeding 30 

percent. 

 

Table 4.2: Variation arising from use of SMR as shown by Coefficient of Variation 

(CV percent) using 1995 UDHS data  

No. District  sd for 

SMR 

CV for 

SMR 

(%) 

 sd for 

Poisson-

Gamma 

CV for 

Poisson-

Gamma 

(%) 

 sd for 

Log-

normal 

CV for 

Log-

normal 

(%)  

sd for 

BYM 

CV 

for 

BYM 

(%) 

1 Kalangala 0.218 5.2 0.4718 22.7 0.6607 24.8 0.6881 25.9 

2 Bundibugyo 0.136 8.4 0.1924 13.3 0.2049 13.7 0.2110 14.2 

3 Kamuli 0.067 5.6 0.0790 6.7 0.0792 6.7 0.0843 7.2 

4 Kiboga 0.136 11.0 0.1534 13.3 0.1551 13.3 0.1592 13.7 

5 Kotido 0.186 15.2 0.1886 17.1 0.1982 17.7 0.2037 18.3 

6 Mbarara 0.058 5.2 0.0634 5.8 0.0659 6.0 0.0686 6.2 

7 Kibaale 0.120 10.8 0.1228 11.5 0.1252 11.7 0.1296 12.1 

8 Kumi 0.103 9.9 0.1016 10.0 0.1035 10.2 0.1031 10.2 

9 Mubende 0.083 8.8 0.0764 8.2 0.0774 8.3 0.0774 8.4 

10 Kisoro 0.143 15.5 0.1201 13.4 0.1235 13.8 0.1236 13.9 

11 Masaka 0.066 7.5 0.0568 6.5 0.0573 6.6 0.0590 6.7 

12 Rakai 0.110 15.7 0.0747 10.6 0.0753 10.7 0.0749 10.7 

13 Pallisa 0.102 14.6 0.0703 10.0 0.0690 9.8 0.0692 9.9 

14 Lira 0.083 11.9 0.0574 8.2 0.0566 8.1 0.0579 8.3 

15 Jinja 0.115 16.8 0.0751 10.9 0.0754 11.0 0.0758 11.1 

16 Arua 0.075 11.3 0.0504 15.4 0.0495 7.4 0.0489 7.3 

17 Hoima 0.164 25.0 0.1028 7.5 0.0999 15.1 0.1023 15.4 

18 Soroti 0.097 15.1 0.0616 9.5 0.0615 9.5 0.0611 9.5 

19 Tororo 0.086 13.5 0.0543 8.5 0.0544 8.5 0.0542 8.5 

20 Gulu 0.106 16.7 0.0662 10.4 0.0652 10.2 0.0652 10.2 
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No. District  sd for 

SMR 

CV for 

SMR 

(%) 

 sd for 

Poisson-

Gamma 

CV for 

Poisson-

Gamma 

(%) 

 sd for 

Log-

normal 

CV for 

Log-

normal 

(%)  

sd for 

BYM 

CV 

for 

BYM 

(%) 

21 Bushenyi 0.087 13.7 0.0535 8.3 0.0540 8.5 0.0533 8.4 

22 Kabarole 0.086 13.7 0.0539 8.5 0.0528 8.4 0.0532 8.4 

23 Nebbi 0.035 5.7 0.0668 10.7 0.0675 10.9 0.0654 10.5 

24 Kampala 0.082 13.3 0.0647 10.5 0.0498 8.0 0.0509 8.2 

25 Luwero 0.108 17.6 0.0501 8.0 0.0642 10.4 0.0639 10.3 

26 Mbale 0.078 12.8 0.0471 7.6 0.0465 7.6 0.0471 7.7 

27 Iganga 0.068 11.4 0.0411 6.8 0.0399 6.6 0.0403 6.7 

28 Moyo 0.154 26.7 0.0864 14.6 0.0847 14.3 0.0844 14.3 

29 Mpigi 0.081 15.0 0.0431 8.0 0.0433 8.0 0.0444 8.1 

30 Kapchorwa 0.224 50.1 0.0969 19.7 0.0940 19.1 0.0961 19.5 

31 Moroto 0.174 38.1 0.0772 15.9 0.0773 15.8 0.0788 16.2 

32 Mukono 0.092 19.7 0.0431 9.0 0.0423 8.9 0.0441 9.2 

33 Apac 0.107 23.2 0.0494 10.4 0.0491 10.4 0.0505 10.7 

34 Rukungiri 0.143 32.5 0.0614 13.2 0.0609 13.2 0.0635 13.7 

35 Masindi 0.189 50.2 0.0703 17.0 0.0691 16.5 0.0714 17.1 

36 Kasese 0.171 49.3 0.0596 15.8 0.0594 15.5 0.0630 16.4 

37 Kabale 0.171 59.8 0.0496 15.7 0.0511 15.8 0.0535 16.5 

Table 4.2 Continued
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4.2 Comparison of SMR to Poisson-gamma, the BYM and Log-normal 

Models Using UDHS 2001 Data 

Results presented in Table 4.3 show that traditional method of estimation using SMR 

were not different by much from the model approach when UDHS 2001 data was used. 

Again this may largely be attributed to the fact that the numbers of districts were still few 

by 2001 and the observed counts (yi) were fairly substantial. In year 2001 only 34 

districts were covered implying that higher deaths counts (yi) per district were obtained 

compared to using UDHS 2006 data. 

 

In about 56 percent and 74 percent of the cases, the standard deviation (sd) under Log-

normal and the BYM models respectively were higher than those from the Poisson-

gamma model. Results on the DIC appear to reveal no difference between Log-normal, 

BYM and the Poisson-gamma models (difference less than 5) though the latter had the 

least DIC value. Convergence for both models (Poisson-gamnma, log-normal and the 

BYM) were achieved at 4,000 iterations. 

 

Results show that the district of Kalangala consistently had a very high SMR and RR of 

under-five mortality for the period 1995 to 2001. The other districts with high RR 

included; Rukungiri, Kisoro, Kabarole. The districts of Mpigi, Moyo and Mubende also 

had a slightly high relative risk of under-five mortality. Overall, results obtained using 

the four methods (SMR, Poisson-gamma, log-normal and the BYM model) were 

considerably not deviating from each other by much using the 1995 and 2001 datasets. 

This may be attributed to the fact that the numbers of districts were still few (34) and 

subsequently a large number of observations per district to reduce the noise. Taking the 
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rule of thumb for where yi<30 (small sample size), we have only two districts of 

Kalangala and Masindi that break the rule with few observations (Table 4.3). 

 

Table 4.3: Comparison of RR from SMR, Poisson-gamma, Log-normal and the 

BYM Models using 2001 data 

No. District under-five 

deaths 

(yi) 

SMR Poisson-gamma 

model 

(DIC=279.8)   

Log-normal 

model 

(DIC=280.9)   

BYM 

(DIC=281.1)   

1 Kalangala 18 2.06 1.62 1.77 1.76 

2 Rukungiri 152 1.68 1.64 1.65 1.66 

3 Kisoro 113 1.56 1.52 1.54 1.54 

4 Kabarole 152 1.30 1.28 1.28 1.28 

5 Mpigi 111 1.08 1.07 1.07 1.07 

6 Moyo 67 1.04 1.02 1.02 1.02 

7 Mubende 177 1.02 1.02 1.02 1.02 

8 Iganga 194 1.00 0.99 0.99 0.99 

9 Kamuli 191 0.99 0.98 0.98 0.98 

10 Masaka 189 0.98 0.97 0.97 0.97 

11 Kiboga 52 0.90 0.89 0.89 0.87 

12 Moroto 50 0.80 0.79 0.78 0.77 

13 Rakai 90 0.76 0.76 0.76 0.76 

14 Mbale 145 0.74 0.74 0.73 0.73 

15 Soroti 71 0.70 0.70 0.70 0.70 

16 Nebbi 95 0.66 0.66 0.66 0.66 

17 Kumi 69 0.65 0.65 0.64 0.64 

18 Bushenyi 151 0.63 0.63 0.63 0.63 

19 Tororo 91 0.62 0.62 0.62 0.62 

20 Mbarara 221 0.62 0.62 0.62 0.62 

21 Apac 134 0.59 0.59 0.59 0.59 

22 Kabale 85 0.57 0.57 0.57 0.57 

23 Arua 156 0.57 0.57 0.57 0.57 

24 Mukono 110 0.55 0.55 0.55 0.55 

25 Kibaale 71 0.53 0.54 0.54 0.54 

26 Pallisa 72 0.50 0.51 0.51 0.51 

27 Jinja 53 0.50 0.51 0.50 0.51 

28 Luwero 59 0.49 0.50 0.50 0.50 

29 Lira 120 0.49 0.49 0.49 0.49 

30 Kampala 106 0.35 0.36 0.36 0.36 

31 Masindi 30 0.20 0.21 0.22 0.22 

32 Hoima 19 0.17 0.19 0.20 0.19 

33 Kapchorwa 3 0.06 0.11 0.13 0.13 

34 Kotido 22 0.11 0.13 0.13 0.13 

NB: Districts not covered in the survey due to insecurity: Kasese, Bundibugyo, Gulu and 

Kitgum 
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Districts that had higher CVs had peculiar SMR that were quite of out-of-range. For 

instance, Kapchorwa shows an SMR of 0.06 implying a very low chance of relative risk 

to under-five mortality in the district to almost 94% below the national level. However, 

the three models (Posson-gamma, log-normal and BYM) independently show close and 

comparable results and their CVs were considerably low (<100% in all cases). These 

findings together with test for reliability of SMR using CV show that there are higher 

possibilities of ―noise‖ in using SMR. Results obtained using the model approaches are 

also in close range with those from neighbouring districts especially for districts where 

SMR appears to be out-of-range. 

 

SMR results using the 2001 UDHS data showed high variability (CV>100%) in only 

three districts of Kapchorwa, Kotido and Hoima as shown in Table 4.4. Overall, other 

district‘s coefficients of variation were relatively low indicating low level of ‗noise‘ in 

the SMR computations using 1995 and 2001 datasets. 

 

Table 4.4: Variation arising from use of SMR as shown by Coefficient of Variation 

(CV percent) using 2001 UDHS data 
No. District sd for 

SMR 

CV for 

SMR % 

sd for 

Poisson-

gamma 

CV for 

Poisson-

gamma 

%   

sd for 

Log-

normal 

CV for 

Log-

normal 

%   

sd for 

BYM 

CV for 

BYM %   

1 Kalangala 0.24 11.45 0.3615 22.2 0.4205 23.8 0.4308 24.5 
2 Rukungiri 0.08 4.81 0.1326 8.1 0.1370 8.3 0.1395 8.5 
3 Kisoro 0.09 6.01 0.1433 9.4 0.1479 9.6 0.1466 9.6 
4 Kabarole 0.08 6.24 0.1021 8.0 0.1047 8.2 0.1082 8.4 
5 Mpigi 0.10 8.77 0.1009 9.4 0.0997 9.3 0.1031 9.7 
6 Moyo 0.12 11.74 0.1201 11.8 0.1243 12.2 0.1250 12.2 
7 Mubende 0.08 7.34 0.0757 7.4 0.0766 7.5 0.0783 7.7 
8 Iganga 0.07 7.20 0.0712 7.2 0.0710 7.2 0.0726 7.3 
9 Kamuli 0.07 7.30 0.0714 7.3 0.0712 7.3 0.0727 7.4 

10 Masaka 0.07 7.48 0.0678 7.0 0.0712 7.3 0.0703 7.2 
11 Kiboga 0.14 15.41 0.1186 13.4 0.1195 13.5 0.1234 14.0 
12 Moroto 0.14 17.73 0.1089 13.8 0.1090 13.9 0.1113 14.3 
13 Rakai 0.11 13.79 0.0793 10.4 0.0786 10.4 0.0784 10.3 
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No. District sd for 

SMR 

CV for 

SMR % 

sd for 

Poisson-

gamma 

CV for 

Poisson-

gamma 

%   

sd for 

Log-

normal 

CV for 

Log-

normal 

%   

sd for 

BYM 

CV for 

BYM %   

14 Mbale 0.08 11.26 0.0611 8.3 0.0596 8.1 0.0603 8.3 
15 Soroti 0.12 16.98 0.0812 11.5 0.0810 11.6 0.0814 11.7 
16 Nebbi 0.10 15.62 0.0675 10.3 0.0659 10.0 0.0666 10.2 
17 Kumi 0.12 18.56 0.0753 11.6 0.0763 11.8 0.0752 11.6 
18 Bushenyi 0.08 12.86 0.0505 8.0 0.0509 8.1 0.0506 8.0 
19 Tororo 0.11 16.97 0.0643 10.3 0.0644 10.4 0.0638 10.3 
20 Mbarara 0.07 10.82 0.0419 6.7 0.0414 6.7 0.0414 6.7 
21 Apac 0.09 14.53 0.0510 8.6 0.0506 8.5 0.0511 8.6 
22 Kabale 0.11 19.09 0.0602 10.6 0.0597 10.5 0.0608 10.7 
23 Arua 0.08 14.16 0.0446 7.9 0.0450 7.9 0.0455 8.0 
24 Mukono 0.10 17.26 0.0527 9.5 0.0514 9.3 0.0521 9.4 
25 Kibaale 0.12 22.30 0.0628 11.6 0.0621 11.6 0.0638 11.9 
26 Pallisa 0.12 23.37 0.0610 11.9 0.0583 11.4 0.0585 11.4 
27 Jinja 0.14 27.44 0.0672 13.3 0.0668 13.2 0.0679 13.5 
28 Luwero 0.13 26.49 0.0628 12.6 0.0626 12.6 0.0625 12.6 
29 Lira 0.09 18.61 0.0440 8.9 0.0446 9.1 0.0449 9.1 
30 Kampala 0.10 27.34 0.0352 9.8 0.0353 9.8 0.0363 10.0 
31 Masindi 0.18 91.89 0.0376 17.6 0.0380 17.6 0.0425 19.4 
32 Hoima 0.23 135.77 0.0406 21.4 0.0415 21.1 0.0460 23.5 

33 
Kapchorw

a 0.58 1003.02 0.0455 41.2 0.0484 36.2 0.0530 39.9 
34 Kotido 0.21 189.68 0.0257 20.4 0.0274 20.7 0.0356 26.7 

 

 

4.3 Comparison of SMR to Poisson-gamma, BYM and Log-normal Models 

Using UDHS 2006 Data 

Results after using SMR, Poisson-gamma, Log-normal and the BYM, show that there 

was a lot of ―noise‖ from the SMR compared to model approach using the UDHS 2006 

data. The ―noise‖ from SMR results can be attributed to the fact that more districts (56) 

were introduced by year 2006 that reduced the sample size per district. DIC results 

suggest that all the three models; Poisson-gamma, Log-normal and the BYM models had 

no substantial difference amongst them. It was also observed from the diagnostics test for 

the presence of autocorrelation that its existence was rather feeble. The absence of a 

stronger autocorrelation suggests that the Poisson-gamma model could as well perform as 
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good as the other model options. Additionally, results presuppose that either the Poisson-

gamma or the BYM or the log-normal appear to be suitable for modeling and estimation 

of relative risk of under-five in Uganda. 

 

Findings also show that the Poisson-gamma model potentially perform better than other 

HB models as shown in Figure 4.1 below. The model with the lowest DIC is considered 

better. It is also important to note that the differences between the values of the DIC were 

generally low indicating that all the three models were fairly good in deriving relative 

risk of under-five mortality.  

 
Figure 4.1: Comparison of Model Performance using DIC 

 

Using 2006 data, the districts of Moroto, Kotido, Gulu, Iganga, Kamuli, Pader, Mbale, 

Mubende and Arua were identified with high relative risk (>=1.10) of under-five 

mortality. Sembabule, Kitgum, Nakapiripirit, Kisoro and Kamwenge had equally high 

relative risk of under-five mortality (Table 4.5).  
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Table 4.5: Comparison of SMR to Poisson-gamma, BYM and log-normal models 

using 2006 UDHS data 

No. District 

under-

five 

deaths 

(yi) SMR 

 RR -

Poisson(DIC

=284.5) 

 RR -BYM 

(DIC=286.6) 

 RR -

Lognormal 

(DIC= 

287.0) 

1 

Moroto 

111 1.53 1.28 1.46 1.31 

2 

Kotido 

241 1.06 1.27 1.36 1.27 

3 

Gulu 

210 1.00 1.21 1.26 1.20 

4 

Iganga 

192 0.96 1.17 1.18 1.16 

5 

Kamuli 

192 0.96 1.16 1.20 1.16 

6 

Pader 

139 0.97 1.13 1.20 1.11 

7 

Mbale 

167 0.91 1.12 1.13 1.11 

8 

Mubende 

177 0.90 1.12 1.12 1.10 

9 

Arua 

273 0.84 1.11 1.12 1.10 

10 

Sembabule 

66 1.05 1.05 1.05 1.04 

11 

Kitgum 

108 0.87 1.05 1.12 1.03 

12 

Nakapiripirit 

61 1.03 1.03 1.08 1.03 

13 

Kisoro 

8 0.09 1.03 1.03 1.02 

14 

Kamwenge 

74 0.88 1.02 0.97 1.00 

15 

Bundibugyo 

57 0.85 0.98 0.94 0.96 

16 

Rakai 

111 0.67 0.93 0.90 0.92 

17 

Nakasongola 

77 0.64 0.87 0.86 0.87 

18 

Kibaale 

174 0.59 0.87 0.84 0.86 

19 

Kalangala 

23 0.58 0.87 0.80 0.85 

20 

Apac 

78 0.58 0.85 0.86 0.85 

21 

Tororo 

68 0.57 0.85 0.84 0.85 
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No. District 

under-

five 

deaths 

(yi) SMR 

 RR -

Poisson(DIC

=284.5) 

 RR -BYM 

(DIC=286.6) 

 RR -

Lognormal 

(DIC= 

287.0) 

22 

Busia 

7 0.55 0.85 0.82 0.84 

23 

Kyenjojo 

35 0.57 0.84 0.82 0.84 

24 

Masindi 

79 0.54 0.83 0.82 0.82 

25 

Hoima 

57 0.52 0.83 0.78 0.82 

26 

Kiboga 

156 0.49 0.82 0.80 0.81 

27 

Bushenyi 

32 0.54 0.82 0.78 0.81 

28 

Kampala 

87 0.52 0.82 0.42 0.81 

29 

Nebbi 

127 0.51 0.81 0.80 0.80 

30 

Masaka 

140 0.52 0.81 0.78 0.80 

31 

Kapchorwa 

65 0.39 0.79 0.79 0.80 

32 

Pallisa 

19 0.49 0.79 0.79 0.79 

33 

Kaberamaido 

52 0.27 0.78 0.77 0.78 

34 

Bugiri 

9 0.45 0.78 0.74 0.78 

35 

Sironko 

104 0.36 0.76 0.76 0.76 

36 

Mukono 

26 0.46 0.75 0.71 0.76 

37 

Katakwi 

29 0.35 0.75 0.75 0.76 

38 

Kanungu 

27 0.36 0.75 0.70 0.75 

39 

Soroti 

147 0.36 0.74 0.73 0.74 

40 

Kayunga 

34 0.32 0.74 0.70 0.74 

41 

Lira 

27 0.45 0.73 0.75 0.74 

42 

Kasese 

66 0.40 0.73 0.69 0.73 

43 

Kumi 

34 0.34 0.73 0.74 0.73 
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No. District 

under-

five 

deaths 

(yi) SMR 

 RR -

Poisson(DIC

=284.5) 

 RR -BYM 

(DIC=286.6) 

 RR -

Lognormal 

(DIC= 

287.0) 

44 

Rukungiri 

49 0.33 0.71 0.67 0.73 

45 

Luwero 

36 0.36 0.71 0.68 0.72 

46 

Ntungamo 

52 0.34 0.69 0.65 0.70 

47 

Kabale 

65 0.36 0.69 0.65 0.70 

48 

Moyo 

177 0.17 0.68 0.63 0.69 

49 

Mbarara 

13 0.41 0.66 0.66 0.69 

50 

Jinja 

41 0.24 0.66 0.63 0.68 

51 

Mpigi 

26 0.29 0.66 0.62 0.68 

52 

Kabarole 

26 0.23 0.65 0.62 0.67 

53 

Adjumani 

10 0.13 0.64 0.63 0.67 

54 

Yumbe 

16 0.16 0.63 0.60 0.66 

55 

Mayuge 

8 0.09 0.60 0.49 0.64 

56 

Wakiso 

63 0.20 0.49 0.55 0.54 

Table 4.5 (Continued) 
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Using 2006 dataset again, results show high CVs for the districts of Adjumani, 

Kaberamaido, Kisoro, Mayuge, Moyo and Yumbe. The CVs for these districts using the 

SMR were relatively high (>100%) as shown in Table 4.6 depicting unreliability in 

utilization of SMR to estimate relative risk of under-five mortality. The CVs for the 

Poisson-gamma model were all much lower than 50% compared to those from SMR 

(Table 4.6). 

 

Table 4.6: Variability arising from use of SMR as shown by Coefficient of Variation 

(CV percent) using 2006 UDHS data 
No. District sd for 

SMR  

CV for 

SMR 

% 

sd-

Poisson 

 

CV for 

Poisson-

gamma 

% 

sd-

Lognormal 

CV for 

Log-

normal 

% 

sd- 

BYM 

CV for 

BYM 

% 

1 

Moroto 
0.095 6.2 

0.30650 23.4 0.36970 28.2 0.43030 29.5 

2 

Kotido 
0.064 6.0 

0.22710 17.9 0.25240 19.9 0.26900 19.8 

3 

Gulu 
0.069 6.9 

0.22620 18.9 0.24450 20.4 0.25640 20.3 

4 

Iganga 
0.072 7.5 

0.22820 19.7 0.24390 21.0 0.25270 21.4 

5 

Kamuli 
0.072 7.5 

0.22240 19.2 0.23750 20.5 0.26370 22.0 

6 

Pader 
0.085 8.8 

0.24200 21.8 0.25040 22.6 0.28680 23.9 

7 

Mbale 
0.077 8.5 

0.22240 20.0 0.23620 21.3 0.24190 21.4 

8 

Mubende 
0.075 8.3 

0.21810 19.8 0.19530 17.8 0.24130 21.5 

9 

Arua 
0.061 7.3 

0.18730 17.0 0.23120 21.0 0.20420 18.2 

10 

Sembabule 
0.123 11.7 

0.26530 25.5 0.28260 27.2 0.31230 29.7 

11 

Kitgum 
0.096 11.0 

0.24120 23.4 0.24400 23.7 0.28950 25.8 

12 

Nakapiripirit 
0.128 12.4 

0.27410 26.6 0.28110 27.3 0.33410 30.9 

13 

Kisoro 
0.354 388.1 

0.25920 25.4 0.26260 25.7 0.30120 29.2 

14 

Kamwenge 
0.116 13.2 

0.25650 25.7 0.26270 26.3 0.27680 28.5 

15 

Bundibugyo 
0.132 15.5 

0.26140 27.2 0.26100 27.2 0.27240 29.0 

16 

Rakai 
0.095 14.1 

0.20980 22.8 0.20420 22.2 0.21480 23.9 
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No. District sd for 

SMR  

CV for 

SMR 

% 

sd-

Poisson 

 

CV for 

Poisson-

gamma 

% 

sd-

Lognormal 

CV for 

Log-

normal 

% 

sd- 

BYM 

CV for 

BYM 

% 

17 

Nakasongola 
0.209 32.8 

0.20990 24.1 0.25050 28.8 0.29590 34.4 

18 

Kibaale 
0.114 19.2 

0.16750 19.5 0.20840 24.2 0.22190 26.4 

19 

Kalangala 
0.378 65.7 

0.26080 30.7 0.27330 32.2 0.30040 37.6 

20 

Apac 
0.076 13.1 

0.20830 24.5 0.15490 18.2 0.17400 20.2 

21 

Tororo 
0.113 19.8 

0.21090 24.8 0.20000 23.5 0.21510 25.6 

22 

Busia 
0.169 30.6 

0.27410 32.6 0.22330 26.6 0.26130 31.9 

23 

Kyenjojo 
0.121 21.4 

0.24030 28.6 0.20680 24.6 0.21070 25.7 

24 

Masindi 
0.113 21.0 

0.20380 24.9 0.19690 24.0 0.20640 25.2 

25 

Hoima 
0.132 25.4 

0.21470 26.2 0.20020 24.4 0.21230 27.2 

26 

Kiboga 
0.177 36.0 

0.16320 20.1 0.22270 27.5 0.24340 30.4 

27 

Bushenyi 
0.080 14.9 

0.23620 29.2 0.15530 19.2 0.16190 20.8 

28 

Kampala 
0.089 17.2 

0.19300 23.8 0.16410 20.3 0.12620 30.0 

29 

Nebbi 
0.107 20.8 

0.17140 21.4 0.17950 22.4 0.20660 25.8 

30 

Masaka 
0.085 16.4 

0.16680 20.9 0.15740 19.7 0.17580 22.5 

31 

Kapchorwa 
0.229 58.6 

0.20150 25.2 0.22430 28.0 0.26040 33.0 

32 

Pallisa 
0.124 25.3 

0.24100 30.5 0.19180 24.3 0.20210 25.6 

33 

Kaberamaido 
0.333 124.3 

0.20790 26.7 0.23700 30.4 0.24250 31.5 

34 

Bugiri 
0.139 31.0 

0.24380 31.3 0.19520 25.0 0.20550 27.8 

35 

Sironko 
0.196 54.5 

0.16440 21.6 0.20920 27.5 0.23590 31.0 

36 

Mukono 
0.098 21.3 

0.21920 28.8 0.16810 22.1 0.17060 24.0 

37 

Katakwi 
0.192 54.2 

0.21790 28.7 0.20720 27.3 0.21440 28.6 

38 

Kanungu 
0.186 52.3 

0.22140 29.5 0.20190 26.9 0.22380 32.0 

39 

Soroti 
0.171 47.5 

0.15300 20.7 0.19600 26.5 0.21830 29.9 

40 

Kayunga 
0.192 59.4 

0.20980 28.4 0.19690 26.6 0.20770 29.7 

41 

Lira 
0.082 18.2 

0.21520 29.1 0.14290 19.3 0.14850 19.8 

42 

Kasese 
0.123 31.1 

0.17960 24.6 0.17380 23.8 0.17700 25.7 
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No. District sd for 

SMR  

CV for 

SMR 

% 

sd-

Poisson 

 

CV for 

Poisson-

gamma 

% 

sd-

Lognormal 

CV for 

Log-

normal 

% 

sd- 

BYM 

CV for 

BYM 

% 

43 

Kumi 
0.171 50.0 

0.20400 27.9 0.18960 26.0 0.22020 29.8 

44 

Rukungiri 
0.165 50.2 

0.19110 26.2 0.18660 25.6 0.19930 29.7 

45 

Luwero 
0.143 39.6 

0.20170 28.0 0.17620 24.5 0.17520 25.8 

46 

Ntungamo 
0.139 40.4 

0.18170 26.0 0.17190 24.6 0.17130 26.4 

47 

Kabale 
0.124 34.8 

0.17540 25.1 0.16310 23.3 0.15930 24.5 

48 

Moyo 
0.277 161.6 

0.13040 18.9 0.19250 27.9 0.20530 32.6 

49 

Mbarara 
0.075 18.4 

0.20720 30.0 0.12660 18.3 0.12340 18.7 

50 

Jinja 
0.196 82.3 

0.18010 26.5 0.18380 27.0 0.18630 29.6 

51 

Mpigi 
0.156 54.3 

0.19000 27.9 0.17230 25.3 0.17070 27.5 

52 

Kabarole 
0.196 85.8 

0.19220 28.7 0.17650 26.3 0.17750 28.6 

53 

Adjumani 
0.316 248.9 

0.20670 30.9 0.18710 27.9 0.20600 32.7 

54 

Yumbe 
0.250 153.2 

0.19210 29.1 0.17660 26.8 0.19550 32.6 

55 

Mayuge 
0.354 404.5 

0.13090 20.5 0.18200 28.4 0.12460 25.4 

56 

Wakiso 
0.126 63.5 

0.19290 35.7 0.13200 24.4 0.17770 32.3 

Table 4.6 Continued
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4.4 Spatial Variations for the Relative Risk of Under-five Mortality in 

Uganda 
 

Results presented in Table 4.7 show a consistent high RR of under-five mortality for the 

districts of Kotido, Kamuli, Mubende and Kisoro over the period 1995 to 2006. The 

districts of Jinja, Kabale, Luwero, Lira, Kasese Soroti, Mukono, Pallisa, Kapchorwa have 

relatively had low RR over the time period (1995 to 2006).  Results also show some 

peculiar and rather a very low RR for the district of Kotido for the year 2001 and this 

could be associated with data problems despite the smoothing by the HB model approach. 

The results for Kotido deviates from the trend given the fact that in 1995 the district had a 

RR of 1.11 while in 2006 the figure was 1.21 compared to 0.13 in 2001.  

 
Table 4.7: Variability of Relative Risk of Under-five over the period 1995 to 2006 

No. District 

 RR 

(2006) 

 RR 

(2001) 

 RR 

(1995) 

 

No. District 

 RR 

(2006) 

 RR 

(2001) 

 RR 

(1995) 

1 Moroto 1.28 0.79 0.49 

 

29 Masaka 0.81 0.97 0.88 

2 Kotido 1.27 0.13 1.11 

 

30 Nebbi 0.81 0.66 0.62 

3 Gulu 1.21 n/a 0.64 

 

31 Kapchorwa 0.79 0.11 0.49 

4 Iganga 1.17 0.99 0.60 

 

32 Pallisa 0.79 0.51 0.7 

5 Kamuli 1.16 0.98 1.17 

 

33 Bugiri 0.78 n/a n/a 

6 Pader 1.13 n/a n/a 

 

34 Kaberamaido 0.78 n/a n/a 

7 Mbale 1.12 0.74 0.61 

 

35 Sironko 0.76 n/a n/a 

8 Mubende 1.12 1.02 0.93 

 

36 Kanungu 0.75 n/a n/a 

9 Arua 1.11 0.57 0.67 

 

37 Katakwi 0.75 n/a n/a 

10 Kitgum 1.05 n/a n/a 

 

38 Mukono 0.75 0.55 0.48 

11 Sembabule 1.05 n/a n/a 

 

39 Kayunga 0.74 n/a n/a 

12 Kisoro 1.03 1.52 0.90 

 

40 Soroti 0.74 0.7 0.65 

13 Nakapiripirit 1.03 n/a n/a 

 

41 Kasese 0.73 n/a 0.38 

14 Kamwenge 1.02 n/a n/a 

 

42 Kumi 0.73 0.65 1.01 

15 Bundibugyo 0.98 n/a 1.45 

 

43 Lira 0.73 0.49 0.70 

16 Rakai 0.93 0.76 0.71 

 

44 Luwero 0.71 0.5 0.62 

17 Kalangala 0.87 1.62 2.10 

 

45 Rukungiri 0.71 1.64 0.46 

18 Kibaale 0.87 0.54 1.07 

 

46 Kabale 0.69 0.57 0.32 

19 Nakasongola 0.87 n/a n/a 

 

47 Ntungamo 0.69 n/a n/a 

20 Apac 0.85 0.59 0.47 

 

48 Moyo 0.68 1.02 0.59 

21 Busia 0.85 n/a n/a 

 

49 Jinja 0.66 0.51 0.69 

22 Tororo 0.85 0.62 0.64 

 

50 Mbarara 0.66 0.62 1.10 
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No. District 

 RR 

(2006) 

 RR 

(2001) 

 RR 

(1995) 

 

No. District 

 RR 

(2006) 

 RR 

(2001) 

 RR 

(1995) 

23 Kyenjojo 0.84 n/a n/a 

 

51 Mpigi 0.66 1.07 0.55 

24 Hoima 0.83 0.19 0.67 

 

52 Kabarole 0.65 1.28 0.63 

25 Masindi 0.83 0.21 0.41 

 

53 Adjumani 0.64 n/a n/a 

26 Bushenyi 0.82 0.63 0.64 

 

54 Yumbe 0.63 n/a n/a 

27 Kampala 0.82 0.36 0.62 

 

55 Mayuge 0.6 n/a n/a 

28 Kiboga 0.82 0.89 1.16 

 

56 Wakiso 0.49 n/a n/a 

n/a = Not Applicable (District was not created by then or was not surveyed due to 

insecurity) 

 

Figure 4.2 shows a spatial trend in the northern region for districts of Arua, Gulu, Pader, 

Kotido and Moroto. This trend could be associated with effects of war that ravaged the 

northern region for two decades since 1986 up to 2006 and the harsh socio-economic 

conditions and cattle rustling in the districts of Kotido and Moroto that could have lead to 

more deaths especially among the children under-five years of age.  
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Figure 4.2: Spatial distribution showing under-five relative risk by 56 districts of 

Uganda (See numbers 1 - 56 in Table 4.6 above for districts) 

 

 

4.5 Diagnostic Tests 

Diagnostic tools were used to test for convergence and the suitability of models. This 

section provides the different diagnostic tests that were used. 
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4.5.1 Convergence Tests 

 

Dynamic traces were used to test whether convergence is attained using graphical means 

(see Appendix 1). In this study, WinBUGS software was used to check for convergence. 

Accuracy of the estimates was also assessed by using the Monte Carlo standard errors of 

the mean. To reach efficiency, the Monte Carlo errors must be small in relation to the 

standard deviation (Lawson, et al., 2003).  Using the Log-normal model and the 

UDHS2006 data, convergence was observed to have fairly been attained at 4000 

iterations. If the model has converged, the trace plot will move ―snake‖ around the mode 

of the distribution. Details of the sample of the first 20 out of 56 dynamic trace plots are 

shown in Appendix 1.    

 

Further diagnostic tests were done using kernel density plots and results also revealed 

stability of the estimates using the Log-normal model at 4000 iteration. A more 

satisfactory kernel density plot would look more of a bell-shaped, though it need not be 

symmetric. A sample of the first 20 out of 56 kernel density plots are also shown in 

Appendix 2.  

 

As already mentioned, geographical locations like districts treated as small area may 

exhibit some form of spatial autocorrelation. Spatial clustering of disease is almost 

inevitable since human populations generally live in spatial clusters rather than random 

distribution of space (Kleinschmidta, et al., 2000). Existence of spatial autocorrelation 

may therefore violate basic assumption used in the Poisson-gamma or Log-normal 

models. It was therefore imperative in this study to test for the existence of 
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autocorrelation and if it exists, a model taking care of its existence can be used. In a 

typical case or undesirable form, the autocorrelation plot will be a solid bar across the 

screen as shown in Figure 4.3. 

 

 

Results reveal that    

 

 

Source: Spiegelhalter et al., 2003 

 

Figure 4.3: Graphical Example of Model with Autocorrelation (Spiegelhalter, 

Thomas, Best, and Lunn, 2003)  

 

Results show that existence of autocorrelation was not evident as shown in Appendix 3.  

 

4.5.2 Sensitivity Analysis 

When prior information is available, sensitivity analysis focuses on the structure of the 

prior distribution; it focuses on how different choices of prior parameters may influence 

the posterior inference (Ntzoufras, 2009). Sensitivity analysis was conducted to 

investigate whether results in the models remain stable when different prior information 

is used. In this study, a diffuse or flat prior was used with the Poisson model (Appendix 

4). Overall results show that after use of the flat and the gamma prior, the results show 

minimal difference in DIC. The main differences were that convergence using the flat 

prior were reached at a higher value (15,000 iterations) compared to use of the gamma 

prior (4,000 iterations). The other difference too is that the standard deviations (sd) using 
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the flat prior were slightly higher compared to use of the gamma prior as show in Table 

4.8.  
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Table 4.8: Comparison of results from a Poisson-gamma model using gamma and flat priors using UDHS2006 data 

No. District 

RR-Poisson 

with gamma 

prior 

(DIC=284.461) 

RR 

Poisson 

with flat 

prior(DIC

=286.274) 

sd-gamma 

prior 

sd – flat 

prior No. District 

RR-

Poisson 

with 

gamma 

prior(DIC=

284.461) 

RR Poisson 

with flat 

prior(DIC=

286.274) 

sd-gamma 

prior 

sd – flat 

prior 

1 Moroto 1.31 
1.62 0.30650 0.4339 

29 Nebbi 0.80 
0.80 0.17140 0.2243 

2 Kotido 1.27 
1.43 0.22710 0.2724 

30 Masaka 0.80 
0.80 0.16680 0.1892 

3 Gulu 1.20 
1.36 0.22620 0.2761 

31 Kapchorwa 0.80 
0.75 0.20150 0.3147 

4 Iganga 1.16 
1.30 0.22820 0.2736 

32 Pallisa 0.79 
0.78 0.24100 0.2418 

5 Kamuli 1.16 
1.30 0.22240 0.2748 

33 Kaberamaido 0.78 
0.71 0.20790 0.3327 

6 Pader 1.11 
1.27 0.24200 0.3046 

34 Bugiri 0.78 
0.74 0.24380 0.2476 

7 Mbale 1.11 
1.24 0.22240 0.276 

35 Sironko 0.76 
0.70 0.16440 0.2787 

8 Mubende 1.10 
1.24 0.21810 0.2707 

36 Mukono 0.76 
0.73 0.21920 0.1926 

9 Arua 1.10 
1.19 0.18730 0.217 

37 Katakwi 0.76 
0.69 0.21790 0.2712 

10 Sembabule 1.04 
1.21 0.26530 0.3861 

38 Kanungu 0.75 
0.68 0.22140 0.2647 

11 Kitgum 1.03 
1.15 0.24120 0.3038 

39 Soroti 0.74 
0.67 0.15300 0.2537 

12 Nakapiripirit 1.03 
1.20 0.27410 0.3881 

40 Kayunga 0.74 
0.65 0.20980 0.2585 

13 Kisoro 1.02 
1.15 0.25920 0.3422 

41 Lira 0.74 
0.71 0.21520 0.1648 

14 Kamwenge 1.00 
1.13 0.25650 0.3391 

42 Kasese 0.73 
0.67 0.17960 0.2091 
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No. District 

RR-Poisson 

with gamma 

prior 

(DIC=284.461) 

RR 

Poisson 

with flat 

prior(DIC

=286.274) 

sd-gamma 

prior 

sd – flat 

prior No. District 

RR-

Poisson 

with 

gamma 

prior(DIC=

284.461) 

RR Poisson 

with flat 

prior(DIC=

286.274) 

sd-gamma 

prior 

sd – flat 

prior 

15 Bundibugyo 0.96 
1.07 0.26140 0.347 

43 Kumi 0.73 
0.65 0.20400 0.2471 

16 Rakai 0.92 
0.97 0.20980 0.2538 

44 Rukungiri 0.73 
0.63 0.19110 0.2329 

17 Nakasongola 0.87 
0.91 0.20990 0.3728 

45 Luwero 0.72 
0.65 0.20170 0.2189 

18 Kibaale 0.86 
0.88 0.16750 0.2618 

46 Ntungamo 0.70 
0.62 0.18170 0.2079 

19 Kalangala 0.85 
0.87 0.26080 0.4228 

47 Kabale 0.70 
0.62 0.17540 0.1936 

20 Apac 0.85 
0.87 0.20830 0.1902 

48 Moyo 0.69 
0.55 0.13040 0.2455 

21 Tororo 0.85 
0.86 0.21090 0.2523 

49 Mbarara 0.69 
0.65 0.20720 0.1412 

22 Busia 0.84 
0.85 0.27410 0.3168 

50 Jinja 0.68 
0.55 0.18010 0.2202 

23 Kyenjojo 0.84 
0.86 0.24030 0.263 

51 Mpigi 0.68 
0.57 0.19000 0.2028 

24 Masindi 0.82 
0.83 0.20380 0.2402 

52 Kabarole 0.67 
0.54 0.19220 0.2135 

25 Hoima 0.82 
0.81 0.21470 0.264 

53 Adjumani 0.67 
0.50 0.20670 0.234 

26 Kiboga 0.81 
0.80 0.16320 0.306 

54 Yumbe 0.66 
0.49 0.19210 0.2144 

27 Bushenyi 0.81 
0.82 0.23620 0.1847 

55 Mayuge 0.64 
0.44 0.13090 0.2075 

28 Kampala 0.81 
0.80 0.19300 0.1954 

56 Wakiso 0.54 
0.40 0.19290 0.1248 

Table 4.8 Continued
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CHAPTER FIVE: DISCUSSIONS 

 
 

In this chapter the study presents discussion of the findings. The chapter provides 

discussion on the suitability of the models used in the study.   

5.1 Discussions of Model Evaluation 

 

Findings show that both the Poisson-gamma, log-normal and the BYM had minimal 

differences in their performance. Findings indicate that SMR gives unstable results 

especially when the number of observations (observed count, y) gets reduced with 

increase in number of districts. Subsequent analysis using SAE technique with current 

increase in the number of districts calls for use of the HB approach which smoothes 

estimates than the use of SMR. 

5.2 Comparison of the Hierarchical Bayes Framework to SMR Results 

In 1995 and 2001 there were a total of 38 districts and by 2006 they were 56. Using fewer 

districts, results show that there were substantial number of deaths (observed count, y) of 

the under-five mortality and hence computations of SMR provided stable estimates. 

Reliability of SMR was verified using coefficient of variation and showed less variability 

when few districts are used. 

 

Evaluation of the three model approach (PG, Log-Normal and the BYM) revealed feeble 

difference in performance. It was also observed from the diagnostics test for the presence 

of autocorrelation that its existence was rather feeble. The absence of a stronger 

autocorrelation suggests that the Poisson-gamma model could as well perform as good as 
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the other model options. Additionally, the results presuppose that either the Poisson-

gamma or the BYM or the log-normal models appear to be suitable for modeling relative 

risk of under-five in Uganda. 

 

Findings also show that the Poisson-gamma model potentially perform better than other 

HB models. The model with the lowest DIC is considered better. It is important to note 

that the differences between the values of the DIC were generally low indicating that all 

the three models were fairly good in deriving relative risk of under-five mortality.  

 

5.3 Variation of Relative Risk of Under-five over 1995 to 2006 

 

Results show that the districts of Kalangala, Bundibugyo, Kamuli, Kiboga, Kotido, 

Mbarara and Kibaale had relatively very high relative risk of under-five mortality by 

1995. Kumi district also exhibited a slightly high relative risk of under-five mortality by 

about 4 percent compared to the national average. 

 

By 2001, results show that the district of Kalangala consistently had a very high SMR 

and RR of under-five mortality. The other districts with very high RR included; 

Rukungiri, Kisoro, Kabarole. Mpigi, Moyo and Mubende had also a slightly high relative 

risk of under-five mortality. 

 

Results from the 2006 data show that the districts of Moroto, Kotido, Gulu, Iganga, 

Kamuli, Pader, Mbale, Mubende and Arua were identified with high relative risk 

(>=1.10) of under-five mortality. Sembabule, Kitgum, Nakapiripirit, Kisoro and 

Kamwenge had equally high relative risk of under-five mortality.  
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Results also show that the districts of Moroto, Kotido, Kamuli, Kisoro, Iganga, Mubende 

and Kamuli have consistently had high relative risk of under-five mortality over the last 

one decade. Kalangala district appear to have improved by 2006 compared to the period 

of 1995 and 2001.  

5.4 Spatial Pattern of Relative risk of Under-five Mortality in Uganda and 

Plausible Causes 

 

This section utilizes literature to explain any linkage with results obtained from the 

models on the relative risk of under-five mortality.   

 

 

The districts of Moroto and Kotido as part of Karamoja region found to have the highest 

relative risk is attributed to high levels of insecurity due to cattle rustling, high poverty 

levels (66 percent live below poverty line-(UBOS and Macro International, 2007)) and 

chronic cyclical drought resulting into food-insecurity.  As a result, many families are 

forced to depend on inadequate food supplies from humanitarian agencies like WFP and 

sometimes from the Office of the Prime Minister (OPM).  Inadequate social service 

delivery in the districts due to inaccessibility, poor quality of services, a mismatch 

between available services and the traditional dictates of the indigenous pastoral 

communities together with prevailing and widespread poverty has harshly impacted on 

the lives of children and the likely cause of high under-five mortality in the districts. The 

high rates of malnutrition in Karamoja region could partly also be attributed to food 

insecurity due to drought and frequent floods coupled with the chronic insecurity, and 

poverty in the region; poor public health system with barriers to health care access; 

inadequate social and child care environment attributed partly to lack of health and 

nutrition education leading to poor infant and young child feeding practices (MoH, 2008).  



66 

 

Compared to other districts in the region, the problem in Kotido is exacerbated by the 

high prevalence of malaria at 48 percent among households which could have been 

attributed to the low mosquito net coverage of 14 percent (MoH, 2008). The districts are 

also located in malaria endemic areas. 

The districts of Gulu, Pader and Kitgum had problems of insurgency for over 20 years 

beginning in 1986 and nearly 90 percent of the populations were confined into IDP 

camps with pathetic conditions of life. Gulu district in particular, under-five mortality 

rate by 2005 was well above emergency thresholds of 2 per 10 000 per day (MOH, 2005). 

This was attributed to mainly poor conditions of living, malaria and AIDS was the top 

self-reported causes of death among children under-five. 

 

Although under-five mortality rate for the South Western part of the country was found to 

be 181 deaths per 1000 live births much higher than the national average of 137 deaths 

(UBOS and Macro International, 2007), findings show that it is only the district of Kisoro 

that had a slightly high relative risk of 1.02. The other districts in the same region of 

Bushenyi, Kabale, Kanungu, Kisoro, Mbarara, Ntungamo and Rukungiri have enjoyed 

relatively peace over the years and have fertile soils, reliable rainfall of two planting 

seasons in a year. The poverty levels are also considerably lower with less than 21 

percent compared to the national average of 31 percent by 2006. High RR in the district 

of Kisoro over time is likely to have been attributed to limited accessibility to health 

services due to the mountainous nature of the area. Kisoro district is located at very high 

altitude of over 7,000 feet above sea level. Compared to other districts in the country 

where the highest height above sea level are in the range of about 4000 feet above sea 

level, Kisoro district remains at a very high altitude.  Studies have shown that pneumonia 
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incidence rates are much higher in high-altitudes than at lower altitudes and likely 

leading cause of deaths in such areas. There are also many problems associated with 

malnutrition in the Southwestern region of the country (UBOS and Macro International, 

2007). Pneumonia in Kisoro is more likely to be exacerbated by effect of malnutrition.   

 

By 1995, Bundibugyo, Mbarara and Kibale districts had high relative risk of under-five 

mortality while Rukungiri, Kisoro and Kabarole had the highest by 2001 from the 

western region.   In Bundibugyo district, high under-five mortality is likely to have been 

associated with the effects of insecurity by 1995 as a result of rebel activities by the 

Allied Democratic Forces.   

 

Results also show a geographical pattern in the under-five mortality especially so in the 

Northern part of the country. This geographical pattern requires more resource allocation 

and effective monitoring of government programs like the Northern Uganda Social 

Action Fund to reduce under-five mortality in the region.  

 

In Iganga district, pneumonia was one of the major killers of children under 5 years. 

Findings from Iganga district show that mistreatment with anti-malarials, delays in 

seeking care and low quality of care for children with fatal pneumonia was killing many 

children (Källander, et al., 2008). In the same district, there was a community knowledge 

gap on symptoms and biomedical treatment for pneumonia (Hildenwall, et al., 2007) and 

findings show that poverty was associated with delay to seek care (Rutebemberwa, 2009). 

Inappropriate knowledge on causes of pneumonia and signs of non severe pneumonia are 

likely to interfere with compliance with home care messages (Irimu, Nduati, Wafula, and 
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Lenja, 2008). Another study in the same region showed that Mbale and Iganga districts 

had the highest proportion of child deaths among the six selected districts of Uganda. 

Results showed that diarrhea was the leading (33 percent) cause of deaths in Mbale while 

malaria (34 percent) and measles (34 percent) were the major causes of under-five 

mortality in Iganga district (Ntozi and Nakanaabi, 1997). On the other hand, Kamuli 

district was faced with multi-faceted problems including malnutrition among children, 

malaria and poor hygiene. Poor hygiene has generally been a big problem in the Eastern 

part of Uganda and this is supported by other studies like Ssenyonga, Muwonge, 

Twebaze, and Mutyabule (2009) with high incidences of diarrhea in the region. 

 

In a study carried out in Arua district, several risk factors were identified to be associated 

with under-five mortality to include; poor accessibility to health services and failures in 

the health systems in terms of medical staff and facilities to meet child health needs 

(Akello, Nabiwemba, Zirabamuzaale, and Orach, 2008). 

 

A study conducted in Mubende district established that low utilization of treated 

mosquito net is the likely cause to high relative risk of the under-five in this area 

(Mufubenga and Kiwuwa, 2004). However, use of treated mosquito nets is equally 

becoming a challenge due to reduced susceptibility to some types of malaria vectors. A 

study by Rubaihayo, Tukesiga, and Abaasa (2008) found out that the pyrethroid 

insecticide treated nets had a reduced susceptibility to the malaria vector Anopheles 

gambiae s.l. in Western Uganda.  
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A study carried out in Sembabule (Mbonye, 2003) revealed that most children with fever, 

diarrhea, and URTI were treated at home and taken to health units only when they 

developed life-threatening symptoms. Mbonye further argues that the late referral was 

complicated by high cost of care, long distances to health units, poor attitude of health 

workers, lack of drugs at health units, and limited involvement of fathers in care of their 

children.  

 

Results for the year 1995 and 2001 showed that Kalangala district had the highest RR in 

the country. Findings using UDHS 2006 data show a rather lower RR compared to the 

prior survey results. Kalangala district is an island which had poor accessibility to 

services like health facilities over time. The district is also located in a high malaria 

endemic place. By 2006, there appear to have been a big shift arising from a number of 

factors related to improved infrastructure and level of investments. Before the year 2006, 

only one ferry was available to the main island of Kalangala through Masaka (Bukakata). 

However, by the year 2006, another ferry connecting to Kalangala main island was 

introduced connecting from Entebbe (Kigungu) which is close to the capital city of the 

country, Kampala. The improved communication is likely to have helped in improved 

provision of services to Kalangala district. Additionally, BIDCO, a company that heavily 

invested over US$28 in palm oil is likely to have made a paradigm shift in people‘s 

incomes and improved access to services like health. The palm oil investments have also 

been supported by other donor agencies like the International Fund for Agricultural 

Development (IFAD). The palm oil investment has resulted in improvement in road 

infrastructure helping the communities to easily access health facilities especially on the 

main island. The communities have also been accessing funds through the out growers 
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scheme to help them in planting palm trees and these funds are likely to have improved 

people‘s lives in the area subsequently leading to a likely causal impact in reduced deaths 

among the children under-five years of age.  

 

Bundibugyo district showed high RR by 1995 and by 2006, there was a relatively lower 

RR to under-five mortality.  Bundibugyo district is located in the West part of the country 

and mainly characterized by a mountainous kind of terrain. The problem in Bundibugyo 

district is likely to have been attributed to difficulty in accessing services and coupled 

with the Allied Democratic Force rebel insurgency in the 1990s.  However, by the year 

2003 the rebellion had disappeared and about three-quarters of the total displaced 

population in the district had returned to their original homes (Hovil and Werker, 2005) 

and living condition appear to have stabilized including likely causal reduction of the 

under-fives.  

 

The findings show that results obtained from the HB framework on the spatial pattern of 

high relative risk of under-five mortality in Uganda show closer associated factors that 

could be explained.  
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CHAPTER SIX: SUMMARY OF FINDINGS, CONCLUSION AND 

RECOMMENDATIONS 

 

In this chapter, the study draws conclusion based on the findings. Recommendations 

based on estimation of relative risk of under-five mortality using small area estimation 

techniques are also discussed. The chapter also provides areas of further research that 

could be under-taken to augment the findings from this work. 

6.1 Summary of Findings 

The models (Poisson-gamma, log-normal and BYM) show that autocorrelation was not 

evident and the likely reason why the Poisson-gamma model performed well compared to 

the log-normal and the BYM the latter two designed to account for autocorrelation.   

Sensitivity analysis was conducted to investigate whether results in the models remain 

stable when a different prior is used i.e robustness of the posterior distribution 

(Ntzoufras, 2009). Overall results show that after use of the flat and gamma priors there 

was a minimal difference in DICs. Convergence using the flat prior were reached at a 

higher value (15,000 iterations) compared to use of a gamma prior (4,000 iterations). 

Secondly, standard deviations (sd) using a flat prior were slightly higher compared to use 

of a gamma prior. Overall conclusion derived from the results for RR would still remain 

the same implying robust in the Poisson-gamma model.  
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Results show that the Poisson-gamma model could provide reliable estimates for   

relative risk of under-five mortality providing lower DIC. Results also reveal that 

compared to the modeling approach, utilization of the traditional Standardized Mortality 

Ratio (SMR) could potentially be associated with high undesirable coefficient of 

variations (>100%).  The modeling approach has added advantage over the commonly 

used SMR by estimating under-five disease risk for a particular district and smoothening 

using adjacent district estimates. The study further reveals that it is possible to utilize 

small area estimation techniques together with national survey data to generate relative 

risk of under-five mortality for districts in Uganda.   

 

The results further reveal that over the study period 1995 to 2006, the districts of; 

Kamuli, Kotido, Kisoro and Mubende consistently showed high RR of under-five 

mortality. The district of Kalangala improved by 2006 and this could be attributed to 

improved communication and more investors (palm growing) with out-growers concept 

funded by BIDCO and IFAD that started in 2003. The investments meant more resources 

to the population leading to improved wellbeing hence reducing chances of under-five 

deaths. 

The results also show spatial trend mainly exhibited in the northern region where RR is 

high compared to other regions in Uganda. 

 

6.2 Conclusion 

 

The study demonstrates that use of SMR when used for estimation of relative risk of 

under-five mortality need to be evaluated using CV. Some of the CVs were found to be 
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undesirably high (>100%). This implies that when CVs are high, estimation of relative 

risk of under-five mortality using SMR would be biased.  

 

This study concludes that; with the continued increment on the number of districts in 

Uganda and when no substantial increment in the sample size is made to the DHS, use of 

SMR is extremely ‗noisy‘ compared to use of the small area estimation models. The 

study also show that the hierarchical Bayes approach was suitable for deriving relative 

risk of under-five mortality in Uganda compared to use of SMR. 

 

This study show that modeling approach through use of; log-normal, Poisson-gamma and 

the BYM yield better and more stable results than the traditional method of SMR. This 

study also demonstrates the use of small area estimation techniques to derive relative risk 

of under-five mortality for districts in Uganda. The study demonstrated that relative risk 

of under-five mortality can be derived for districts. The study show spatial variations of 

relative risk of under-5 mortality in Uganda with mainly the northern part of the country 

having high relative risks. These findings are very important for districts with high RR to 

justify and mobilize resources to address under-five mortality. Districts with high relative 

risk of under-five mortality can be targeted for increased resource funding and 

mobilization.   

 

Furthermore, the study show that with the increase in the number of districts (from 37 in 

1995 to 56 by 2006 in the survey data) and yet the sample size has not substantially been 

increasing, use of SMR becomes extremely unstable compared to the use of HB model 

approach which borrow strength from the neighboring districts to smoothen the estimate 

on relative risk of under-five mortality. The study provides a code fragment using 
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WinBUGS 1.4 software that can be re-used in similar national survey data for Uganda or 

other countries.  

 

The study showed that autocorrelation in the national surveys for the period 1995, 2001 

and 2006 was feeble and the likely reason why results from the Poisson-gamma model 

was performing as good as other models like the log-normal and the BYM.  

 

The study helped to show the variation over the period 1995, 2001 and 2006 for the 

relative risk of under-five mortality at district level using UDHS.  

 

The findings from the HB framework and the literature on associated socio-economic 

factors show closer associations that could explain variability of districts with high 

relative risk of under-5 mortality in Uganda. 

  

6.3 Recommendations 

This study draws key recommendations 

 

1. There is need to evaluate SMR using the coefficient of variation to measure 

relative risk of under-five mortality 

2. Small area estimation need to be used whenever relevant survey data is available 

to monitor districts with high relative risk of under-five mortality as one way for 

health interventions in the country.  

3. With current increase in the number of districts to more than 110, future national 

surveys should incorporate at least a sub-county to allow small area estimation at 
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that level. A proposal to have a sub-county level in survey data is on a premise 

that a district constitutes at least one sub-county.    

4. Current allocation of resources to districts is mainly based on the population and 

less emphasis on disease burden. Allocation of resources needs to take into 

account disease burden by taking advantage of small area estimation techniques. 

5. This research found out that the Poisson-gamma, log-normal and the BYM were 

all good in deriving relative risk of under-five mortality in Uganda. Their 

differences after comparison using DIC were feeble. This implies that the 

Poisson-gamma which is a basic HB model could potentially be a good estimator 

of relative risk of under-five mortality in Uganda. 

6.4 Areas for Further Research 

 

 Further research could be carried out to explore the hierarchical models 

incorporating covariates.   

 Further research on whether incorporating census data as auxiliary information 

would yield better results in the estimation of relative risk of under-five mortality. 

Related to this, further research could explore inclusion of weighted variable in 

the modeling given the fact that selections of some districts were oversampled and 

populations are not evenly distributed.  

  Spatial differentials may also exist with neonatal deaths as established from other 

studies (Adebayo, et al., 2004) and again this may be an area of further research in 

Uganda‘s case. It may therefore be of interest to establish whether spatial 

differentials exist differently for neonatal mortality that might call for different 

intervention strategies. Area of further research using Geoadditive Survival 

Models appear to offer benefits in taking into account age at deaths of the child 
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after being applied in a number of countries like Nigeria (Adebayo, et al., 2004; 

Kandala, et al., 2007)  and Malawi (Kandala and Ghilagaber, 2006) on small area 

estimation for child mortality. 
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APPENDIX 1: Dynamic Trace Plots  for Lognormal Model Using 

UDHS2006 Data 
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APPENDIX 2: Kernel Density Plots for Lognormal Model Using 

UDHS2006 Data 
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APPENDIX 3: Autocorrelation Plots for Lognormal Model Using 

UDHS2006 Data 
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APPENDIX 4: Code Used in WinBUGS1.4 Software 
 
 

 

********* Poisson-gamma model  

 

model 

{ 

for (i in 1:N){ 

   y[i] ~ dpois(mu[i]) 

   mu[i]<-e[i]*theta[i] 

   theta[i]~dgamma(a,b) 

   } 

 

a~dexp(0.1) 

b~dexp(0.1) 

 

mean<-a/b 

var<-a/pow(b,2) 

} 
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********* log-normal model 

 

model 

 { 

   for (i in 1 : N) { 

      y[i] ~ dpois(mu[i]) 

      log(mu[i]) <- log(e[i])+alpha+v[i] 

      theta[i]<-exp(alpha+v[i]) 

      v[i]~dnorm(0,tau) 

   } 

   tau~dgamma(0.5,0.0005) 

   alpha~dnorm(0,1.0E-5) 

   mean<-exp(alpha) 

  } 

 

***Figure deflated by a constant factor for comparability 
list(e=c(20.061,5.251,21.646,4.465,7.741,19.413,4.224,13.939,7.307,13.303,7.275,12.165,7.589,2.240, 

0.811,3.239,4.341,5.848,6.094,2.404,16.392,13.277,5.608,5.434,11.122,5.085,5.573,8.631,8.282, 

15.103,6.629,8.020,21.740,9.054,17.969,9.771,12.218,28.888,4.847,5.056,9.508,13.044,15.047,3.942, 

11.300,10.086,9.571,8.856,10.967,7.304,4.198,4.816,6.291,9.133,21.171,6.535), 

y=c(17.4,1.0,27.3,5.7,5.2,15.6,3.5,21.0,5.7,19.2,2.6,6.5,2.6,0.9,0.7,1.9,3.2,8,0.8,2.3 

,12.7,19.2,7.4,2.9,6.6,2.7,2.7,7.7,10.8,24.1,3.4,6.8,14.7,4.9,14.0,7.9,16.7,17.7,11.1,1.3,4.1,17.7,10.4,6.1,8.7,5.2,13.9,6.5

,11.1,3.6,6.6,2.6,3.4,7.8,6.3,1.6),N=56) 

 

 
********* Using the BYM model 

 

model 

 { 

   for (i in 1 : N) { 

      y[i] ~ dpois(mu[i]) 

      log(mu[i]) <- log(e[i])+alpha+u[i]+v[i] 

      theta[i]<-exp(alpha+u[i]+v[i]) 

      v[i]~dnorm(0,tau.v) 

   } 

   eps<-1.0E-6 

   u[1:56]~car.normal(adj[],weights[],num[],tau.u) 

 for(k in 1:SN) 

   { 

    weights[k]<-1 

   } 

   alpha~dflat() 

   mean<-exp(alpha) 

   tau.u~dgamma(0.5,0.0005) 

   tau.v~dgamma(0.5,0.0005) 

  } 

 

list(N=56, SN=276, 

e=c(4.847,15.103,13.939,13.303,13.277,9.571,12.218,13.044,21.646,4.198, 
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8.282,3.942,5.848,5.608,4.465,10.967,2.404,8.631,0.811,20.061, 

9.133,4.224,8.02,9.771,7.307,4.341,19.413,16.392,11.3,17.969, 

3.239,8.856,2.24,7.741,4.816,15.047,5.085,5.434,6.291,5.573, 

21.74,11.122,6.629,7.304,9.054,10.086,12.165,5.056,28.888,7.275, 

9.508,7.589,5.251,6.535,21.171,6.094), 

y=c(11.1,24.1,21,19.2,19.2,13.9,16.7,17.7,27.3,6.6, 

10.8,6.1,8,7.4,5.7,11.1,2.3,7.7,0.7,17.4, 

7.8,3.5,6.8,7.9,5.7,3.2,15.6,2.7,8.7,14, 

1.9,6.5,0.9,5.2,2.6,10.4,2.7,2.9,3.4,2.7, 

14.7,6.6,3.4,3.6,4.9,5.2,6.5,1.3,17.7,2.6, 

4.1,2.6,1,1.6,6.3,0.8), 

adj=c(2,41,37,12, 

11,6,41,1, 

53,9,29,24,20,6,11, 

5,50,55,34,21,32, 

41,40,50,4,32,39,33, 

11,3,20,41,2, 

35,43,32,21,31, 

26,18,23,49,10,51,56,45, 

54,29,3,53,48, 

8,23,49,16,30,51, 

3,6,2, 

1,37,43,35,31, 

38,47, 

23,52,42,27,49, 

25,42,52,23,18, 

10,49,30,19, 

20,24,45,40,41, 

25,15,52,23,8,26, 

56,51,30,16,36, 

6,3,24,17,41, 

32,4,34,22,7, 

21,34, 

18,15,52,14,49,10,8, 

3,29,25,26,45,17,20, 

24,15,18,26, 

24,25,18,8,45, 

14,42,44,46,49, 

56,36, 

9,24,3, 

51,10,16,19, 

12,35,7, 

43,39,5,4,21,7,35, 

41,5,39,37, 

21,4,55,22, 

12,43,32,7,31, 

50,40,45,56,28,19,55, 

1,41,33,39,43,12, 

44,13,47, 

37,33,5,32,43, 

41,17,45,36,50,5, 

6,20,17,40,5,33,37,1,2, 

52,15,27,14, 

37,39,32,7,35,12, 

27,38,47,46, 

17,24,26,8,56,36,40, 

27,44,47,49, 

46,44,38,13, 

54,9,53, 

23,14,27,46,16,10,8, 

4,5,40,36,55, 

8,10,30,19,56, 

15,42,14,23,18, 

48,54,9,3, 

9,53,48, 

4,50,36,34, 

28,45,8,51,19,36), 

num=c(4,4,7,6,7,5,5,8,5,6, 

3,5,2,5,5,4,5,6,5,5, 

5,2,7,7,4,5,5,2,3,4, 

3,7,4,4,5,7,6,3,5,6, 

9,4,6,4,7,4,4,3,7,5, 
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5,5,4,3,4,6)) 

list(alpha=0,tau.v=1, tau.u=1, 

u=c(0,0,0,0,0,0,0,0,0,0, 

0,0,0,0,0,0,0,0,0,0, 

0,0,0,0,0,0,0,0,0,0, 

0,0,0,0,0,0,0,0,0,0, 

0,0,0,0,0,0,0,0,0,0, 

0,0,0,0,0,0), 

v=c(0,0,0,0,0,0,0,0,0,0, 

0,0,0,0,0,0,0,0,0,0, 

0,0,0,0,0,0,0,0,0,0, 

0,0,0,0,0,0,0,0,0,0, 

0,0,0,0,0,0,0,0,0,0, 

0,0,0,0,0,0)) 

 
 

 

***********Approach 2: Poisson-gamma using diffuse prior  

 

 

model 

{ 

for (i in 1:N){ 

   y[i] ~ dpois(mu[i]) 

   mu[i]<-e[i]*theta[i] 

   theta[i]~dgamma(a,b) 

   } 

a~dgamma(1,1) 

b~dgamma(1,1) 

} 

 

 

 

 

APPENDIX 5: Computation of Expected Value 
 

No. District 

Unweighte

d under-

five 

deaths(yi) - 

derived 

from 

DHS2006 

Population 

2002 

2006 

Under-five 

mortality 

per 1000 

live birth Region 

Population 

Projection 

(2006) 

Estimated 

Population 

Under five 

Expected 

death 

under-

five 

1 Apac 174 683,993 200 

North/IDP 

Area 783,638 150,459 30,092 

2 Adjumani 10 202,290 177 

West 

Nile/North 

West 231,760 44,498 7,876 

3 Arua 273 833,928 177 

West 

Nile/North 

West 955,416 183,440 32,469 

4 Budibugyo 57 209,978 145 Western 240,568 46,189 6,697 
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No. District 

Unweighte

d under-

five 

deaths(yi) - 

derived 

from 

DHS2006 

Population 

2002 

2006 

Under-five 

mortality 

per 1000 

live birth Region 

Population 

Projection 

(2006) 

Estimated 

Population 

Under five 

Expected 

death 

under-

five 

5 Bugiri 52 412,395 128 

East 

Central 472,473 90,715 11,612 

6 Bushenyi 156 731,392 181 

South 

Western 837,943 160,885 29,120 

7 Busia 35 225,008 128 

East 

Central 257,788 49,495 6,335 

8 Gulu 210 475,260 200 

North/IDP 

Area 544,497 104,543 20,909 

9 Hoima 57 343,618 145 Western 393,677 75,586 10,960 

10 Iganga 192 708,690 128 

East 

Central 811,933 155,891 19,954 

11 Jinja 26 387,573 128 

East 

Central 444,035 85,255 10,913 

12 Kabale 65 458,318 181 

South 

Western 525,087 100,817 18,248 

13 Kabarole 26 356,914 145 Western 408,910 78,511 11,384 

14 Kaberamaido 9 131,650 116 Eastern 150,829 28,959 3,359 

15 Kalangala 7 34,766 159 Central 1 39,831 7,648 1,216 

16 Kapchorwa 19 190,391 116 Eastern 218,128 41,880 4,858 

17 Kiboga 32 229,472 129 Central 2 262,902 50,477 6,512 

18 Kisoro 8 220,312 181 

South 

Western 252,407 48,462 8,772 

19 Mayuge 8 324,674 128 

East 

Central 371,973 71,419 9,142 

20 Nakasongola 23 127,064 129 Central 2 145,575 27,950 3,606 

21 Kampala 127 1,189,142 94 Kampala 1,362,378 261,577 24,588 

22 Kamuli 192 707,332 128 

East 

Central 810,377 155,592 19,916 

23 Kamwenge 74 263,730 145 Western 302,151 58,013 8,412 

24 Kanungu 29 204,732 181 

South 

Western 234,558 45,035 8,151 

25 Kasese 66 523,033 145 Western 599,229 115,052 16,683 

26 Katakwi 27 298,950 116 Eastern 342,502 65,760 7,628 

27 Kayunga 27 294,613 129 Central 2 337,533 64,806 8,360 

28 Kibaale 77 405,882 145 Western 465,012 89,282 12,946 

29 Kitgum 108 282,375 200 

North/IDP 

Area 323,512 62,114 12,423 

30 Kotido 241 591,889 174 

North/ 

Karamoja 

Region 678,117 130,198 22,655 

31 Kumi 34 389,665 116 Eastern 446,432 85,715 9,943 

32 Kyenjojo 68 377,171 145 Western 432,118 82,967 12,030 

33 Lira 147 741,240 200 

North/IDP 

Area 849,225 163,051 32,610 

34 Luwero 49 478,595 129 Central 2 548,318 105,277 13,581 

35 Masaka 140 770,662 159 Central 1 882,933 169,523 26,954 
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No. District 

Unweighte

d under-

five 

deaths(yi) - 

derived 

from 

DHS2006 

Population 

2002 

2006 

Under-five 

mortality 

per 1000 

live birth Region 

Population 

Projection 

(2006) 

Estimated 

Population 

Under five 

Expected 

death 

under-

five 

36 Masindi 79 459,490 145 Western 526,429 101,074 14,656 

37 Mbale 167 718,240 116 Eastern 822,875 157,992 18,327 

38 Mbarara 177 1,088,356 181 

South 

Western 1,246,910 239,407 43,333 

39 Moroto 111 189,940 174 

North/ 

Karamoja 

Region 217,611 41,781 7,270 

40 Moyo 13 194,778 177 

West 

Nile/North 

West 223,154 42,845 7,584 

41 Mpigi 41 407,790 159 Central 1 467,198 89,702 14,263 

42 Mubende 177 689,530 129 Central 2 789,982 151,677 19,566 

43 Mukono 104 795,393 129 Central 2 911,267 174,963 22,570 

44 Nakapiripirit 61 154,494 174 

North/ 

Karamoja 

Region 177,001 33,984 5,913 

45 Nebbi 87 435,360 177 

West 

Nile/North 

West 498,784 95,767 16,951 

46 Ntungamo 52 379,987 181 

South 

Western 435,344 83,586 15,129 

47 Pader 139 326,338 200 

North/IDP 

Area 373,880 71,785 14,357 

48 Pallisa 65 520,578 116 Eastern 596,417 114,512 13,283 

49 Rakai 111 470,365 159 Central 1 538,889 103,467 16,451 

50 Rukungiri 36 275,162 181 

South 

Western 315,248 60,528 10,956 

51 Sembabule 66 180,045 159 Central 1 206,274 39,605 6,297 

52 Sironko 26 283,092 116 Eastern 324,333 62,272 7,224 

53 Soroti 34 369,789 116 Eastern 423,661 81,343 9,436 

54 Tororo 78 536,888 116 Eastern 615,103 118,100 13,700 

55 Wakiso 63 907,988 159 Central 1 1,040,265 199,731 31,757 

56 Yumbe 16 251,784 177 

West 

Nile/North 

West 288,464 55,385 9,803 

  Total 4,548 24,442,084 137 

 

28,002,853 5,376,548 736,587 

 


